• Title/Summary/Keyword: XIAP

Search Result 58, Processing Time 0.026 seconds

Effect of Hypoxia-induced XIAP Expression on Apoptosis of Trophoblast Cells in Placenta (Hypoxia에 의한 X-linked Inhibitor of Apoptosis 발현이 태반 내 영양막세포의 세포자멸사에 미치는 영향)

  • Lee, Jong-Sung;Jeon, Su-Yeon;Choi, Jong-Ho;Lee, Yoo-Jin;Cha, Dong-Hyun;Kim, Gi-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.217-229
    • /
    • 2010
  • Objective: Apoptosis plays an important role for the maintenance of the normal pregnancy. Expression of X-linked inhibitor of apoptosis (XIAP) is able to effectively prevent apoptosis and controls trophoblast cells death throughout placental development, but it is still unknown in the function of XIAP in trophoblast cells exposed to hypoxic condition, which is one of the factors causing preeclampsia. Therefore, we conducted to compare XIAP expression in normal and pre-eclamptic placenta tissues and analyzed the function of XIAP in HTR-8/SVneo trophoblast cell line exposed to hypoxic condition. Methods: The expression of XIAP was analyzed in placental tissues from the following groups of patients (none underwent labor): 1) term normal placenta (n=15); 2) term with pre-eclamptic placeneta (n=15); and 3) pre-term with pre-eclamptic placenta (n=11) using semi-quantitative RT-PCR, immunohistochemistry, and Western blot. In order to evaluate the function of XIAP in HTR-8/SVneo trophoblast cells under hypoxic condition, HIF-$1{\alpha}$ plasmids, and hypoxic condtion were transfected and treated into HTR-8/SVneo trophoblast cells for 24 hours, respectively. Results: We observed that XIAP are expressed in the syncytiotrophoblasts and syncytial knot of placental villi. The expression of XIAP was significantly decreased in preeclamptic placenta tissues than in normal placenta tissues without labor (p<0.05). Furthermore, we confirmed the XIAP expression in HTR-8/SVneo trophbolast cells exposed to hypoxia was translocated from cytoplasm into nucleus and decreased XIAP by hypoxic condition induced apoptosis in HTR-8/SVneo trophoblast cells through up-regulation of pro-apoptotic proteins. Conclusion: These results suggest that the expression of XIAP is involved in placental development as well as decreased expression of XIAP by hypoxia is associated with pre-eclampsia through inducing trophoblast cells apoptosis.

Relationship between Expression of XIAP Protein in Operable Non-small Cell Lung Carcinomas and Apoptosis Index and Postoperative Prognosis (비소세포폐암조직에서 XIAP 발현과 고사지수 및 수술 후 예후와의 관계)

  • Kim, Sang Hyun;Lee, Chang Hun;Sol, Mee Young;Song, Jin Mi;Lee, Jong Hyub;Lee, Min Ki;Kim, Jong Min
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.5
    • /
    • pp.480-489
    • /
    • 2005
  • Background : Dysregulation of apoptosis plays an important role in carcinogenesis, tumor progression, and resistance to chemotherapy. X-linked inhibitor of apoptosis (XIAP) is considered to be the most potent caspase inhibitor of all known IAP (inhibitor of apoptosis) family members. This study was designed to assess the pattern of expression and the prognostic value of XIAP in radically resected non-small cell lung carcinoma (NSCLC) patients. Method : The expression of XIAP and its relationship with clinicopathologic parameters (patient age, TNM stage, TNM-pT, TNM-pN, histologic type, VEGF expression, microvessel density, PCNA index) and overall survival were analysed with formalin-fixed, paraffin-embedded blocks from eighty cases of NSCLC. In addition, the apoptotic index (AI) was also assessed. Results : In a regard to histologic type, squamous cell carcinoma (SCC) showed XIAP expression in 91.3%(42/46) and adenocarcinoma (AC) in 61.8%(21/34). The difference was significant(p=0.001). There was no correlation between XIAP expression and other parameters. In the group of AC, XIAP expression showed the signifcant correlation with older age group ${\geq}58years$ and VEGF expression(p=0.028, p=0.014, respectively). The AI in the group with or without XIAP expression were $2.5{\pm}4.9%$ and $18.5{\pm}28.9%$, respectively(p=0.001). Both groups just aforementioned showed no significant difference in median survival time (42.5 months, 29.8 months, respectively). Conclusion : This study suggests that the XIAP expression in NSCLCs could have relation to inhibition of apoptosis, and show differential expression according to histologic type. However, its prognostic role during the progression of NSCLC needs to be further defined.

Treatment of Malignant Melanoma by Downregulation of XIAP and Overexpression of TRAIL with a Conditionally Replicating Oncolytic Adenovirus

  • Li, Xin-Qiu;Ke, Xian-Zhu;Wang, Yu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1471-1476
    • /
    • 2012
  • Background and Aim: Currently available systemic therapies for malignant melanoma produce low response rates in patients, and more effective treatment modalities are clearly needed. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand has a significant impact on therapy for patients with X-linked inhibitor of apoptosis protein-downregulation malignant melanoma. The primary objective of this study was to assess its therapeutic potential. Materials and Methods: We employed a conditionally replicating oncolytic adenoviral vector, named CRAd5.TRAIL/siXIAP, with the characteristics of over-expression of the therapeutic gene TRAIL and downregulation of XIAP in one vector. B16F10-luc cells were employed to detect anti-tumor activity of CRAd5.TRAIL/siXIAP in vitro and in vivo. Results: CRAd5.TRAIL/siXIAP enhanced caspase-8 activation and caspase-3 maturation in B16F10 cells in vitro. Furthermore, it more effectively infected and killed melanoma cells in vitro and in vivo than other adenoviruses. Conclusion: Taken together, the combination of upregulation of TRAIL and downregulation of siXIAP with one oncolytic adenoviral vector holds promise for development of an effective therapy for melanomas and other common cancers.

Characterization of X-linked RNA Transcripts in Matured Bovine Spermatozoa

  • Jeon, Byeong-Gyun;Kumar, B. Mohana;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 2011
  • Although the function and utility of RNA transcripts derived from matured spermatozoa remains unclear, they might play important roles in the establishment of a paternal genome and subsequently embryo development. Herein, we investigated the expression of X-chromosome linked RNA transcripts in matured bovine spermatozoa. The total RNA was extracted from the matured spermatozoa, and then converted to cDNA. Autosomal genes (ACT-${\beta}$ and H-2A) and X-chromosome linked genes (ANT3, HPRT, MeCP2, RPS4X, XIAP, XIST and ZFX) were analyzed for the characterization of X-chromosome linked RNA transcripts and compared to female fibroblasts by RT-PCR. The transcripts of autosomal genes (ACT-${\beta}$ and H2A) and X-chromosome linked genes (ANT3, HPRT, MeCP2, RPS4X and ZFX) were not detected in spermatozoa. However, XIAP (X-linked inhibitor of apoptosis protein) and XIST (X-chromosome inactive-specific transcript, a kind of paternal imprinted gene) transcripts were detected in spermatozoa, and relative levels of XIAP and XIST transcripts were similar and 0.5-fold lower when compared to female fibroblasts, respectively. Based on the findings, it is summarized that the presence of RNA transcripts of XIAP and XIST in the isolated spermatozoa may imply their role in inhibition of apoptosis and induction of X-chromosome inactivation in embryo development.

Alteration of X-linked Inhibitors of Apoptosis (XIAP) Expression in Rat Model with DEN-induced Hepatocellular Carcinogenesis

  • Chang, Jae-Jin;Jeon, Su-Yeon;Song, Ji-Ye;Kim, Jin-Hee;Li, Lan;Park, Dae-Hun;Lee, Yun-Lyul;Park, Jeong-Joo;Woo, Dong-Wook;Kim, Gi-Jin;Lee, Min-Jae
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.278-284
    • /
    • 2008
  • The X-linked inhibitor of apoptosis (XIAP) is a member of a novel family of inhibitors of apoptosis and has several BIR domains (BIR1, BIR2, and BIR3) and a carboxy-terminal RING zinc-finger. Since suppressionof apoptosis is fundamentally important for carcinogenesis and tumor growth, we investigated the expression and function of XIAP in DEN-induced carcinogenesis using rat model. Wistar rats were injected intraperitoneally with DEN at a dose of 50 mg/kg in twice a week for 12 weeks (Group II) and 16 weeks (Group III) followed by the recovery periods, respectively. The evaluation of DEN-induced carcinogenesis carried out the blood, RT-PCR, histopathological and western blot analysis. The level of blood chemistry including GOT/GPT, albumin, and total bilirubin were significantly exchanged comparing to control and Group I/Group II. The expression of albumin and collagen mRNA were significantly exchanged (P<0.05) in both groups. In addition, AFP mRNA expression decreased more after recovery periods than Group II. XIAP was expressed constitutively in normal rat liver as well as DEN-induced Groups I and Group II. In addition, XIAP expression increased more in Group I with 4 weeks recovery periods than Group I. However, XIAP expression shown to increase in Group lI, otherwise, it was decreased in Group II with 10 weeks repair periods. Taken together, these results suggest the alteration of XIAP expression could be involved in hepatocellular carcinogenesis.

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation

  • Sandag, Zolzaya;Jung, Samil;Quynh, Nguyen Thi Ngoc;Myagmarjav, Davaajargal;Anh, Nguyen Hai;Le, Dan-Diem Thi;Lee, Beom Suk;Mongre, Raj Kumar;Jo, Taeyeon;Lee, MyeongSok
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.236-250
    • /
    • 2020
  • Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

Melittin Inhibits DU-145 Cell Proliferation Through Induction of Apoptosis (멜라틴이 세포자멸사 유발에 의해 DU-145 세포증식에 미치는 영향)

  • Shim, Yoon-Seop;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.26 no.3
    • /
    • pp.49-58
    • /
    • 2009
  • 목적 : 본 연구는 봉약침의 주요성분인 멜리틴이 전립선 암세포주인 DU-145 세포성장에 어떤 영향을 미치는지를 알아보기 위하여 시행하였다. 방법 : 멜리틴이 DU-145의 성장에 미치는 영향을 알아보기 위한 cell viability 측정으로는 WST-1 assay를, 세포자멸사의 관찰에는 DAPI(4,6-diamidino-2-phenylindole)와 TUNEL staining assay를 시행하였으며, 세포자멸사 조절단백질(calpain, Bax, caspase-3, -9, cleaved caspase-3, cleavaged PARP, cleaved caspase-9, Bcl-2, XIAP, cIAP2, Akt, p-Akt, MMP-2, MMP-13)의 관찰을 위하여 western blot analysis를 시행하였다. 결과 : 1. DU-145 세포에서 멜리틴을 처리한 후 세포자멸사가 유도되어 세포성장이 억제되었다. 2. 세포자멸사 관련 단백질 중 분리된 caspase-3, caspase-9은 유의한 증가를, Bcl-2, p-Akt, XIAP, cXIAP는 유의한 감소를 나타내었다. 결론 : 이상의 결과는 멜리틴이 인간 전립선암세포주인 DU-145의 세포자멸사를 유발함으로써 증식억제 효과가 있음을 나타낸 것으로, 전립선암의 예방과 치료에 대한 효과적인 치료제 개발에 도움이 될 것으로 기대된다.

  • PDF

XIAP Associated Factor 1 (XAF1) Represses Expression of X-linked Inhibitor of Apoptosis Protein (XIAP) and Regulates Invasion, Cell Cycle, Apoptosis, and Cisplatin Sensitivity of Ovarian Carcinoma Cells

  • Zhao, Wen-Jing;Deng, Bo-Ya;Wang, Xue-Mei;Miao, Yuan;Wang, Jian-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2453-2458
    • /
    • 2015
  • Background: X-linked inhibitor of apoptosis protein (XIAP) associated factor 1 (XAF1) exhibits aberrantly low or absent expression in various human malignancies, closely associated with anti-apoptosis and overgrowth of cancer cells. However, limited attention has been directed towards the contribution of XAF1 to invasion, apoptosis, and cisplatin (DDP)-resistance of epithelial ovarian cancer (EOC) cells. This study aimed to evaluate the potential effects of XAF1 on invasion, cell cycle, apoptosis, and cisplatin-resistance by overexpressing XAF1 in SKOV-3 and SKOV-3/DDP cells. Methods and Results: The pEGFP-C1-XAF1 plasmid was transfected into SKOV-3 and SKOV-3/DDP cells, and the expression of XAF1 at both mRNA and protein levels was analyzed by reverse transcription-PCR and Western blotting. Overexpression of XAF1 suppressed XIAP expression in both SKOV-3 and SKOV-3/DDP cells. Transwell invasion assays demonstrated that XAF1 exerted a strong anti-invasive effect in XAF1-overexpressing cells. Moreover, flow cytometry analysis revealed that XAF1 overexpression arrested the cell cycle at G0/G1 phase, and cell apoptosis analysis showed that overexpression of XAF1 enhanced apoptosis of SKOV-3 and SKOV-3/DDP cells apparently by activating caspase-9 and caspase-3. Furthermore, MTT assay confirmed a dose-dependent inhibitory effect of cisplatin in the tested tumor cells, and overexpression of XAF1 increased the sensitivity of SKOV-3 and SKOV-3/DDP cells to cisplatin-mediated antiproliferative effects. Conclusions: In summary, our data indicated that overexpression of XAF1 could suppress XIAP expression, inhibit invasion, arrest cell cycle, promote apoptosis, and confer cisplatin-sensitivity in SKOV-3 and SKOV-3/DDP cells. Therefore, XAF1 may be further assessed as a potential target for the treatment of both cisplatin-resistant and non-resistant EOCs.