DOI QR코드

DOI QR Code

Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation

  • Kim, Byung Soo (Department of Statistics, Institute of Statistical Information, Inje University) ;
  • Kim, Ji Yeon (Department of Liberal Arts, Inje University)
  • 투고 : 2019.08.05
  • 심사 : 2019.11.29
  • 발행 : 2020.03.28

초록

This study aimed to optimize the culture conditions to improve the crude biosurfactant activity of Bacillus pumilus IJ-1, using a 33 full-factorial design of response surface methodology (RSM). It was found that submerged fermentation of B. pumilus improved the activity of the crude biosurfactant. The factors selected for optimization were NaCl concentration, temperature, and tryptone concentration. Response surface analysis revealed that the fitted quadratic model was statistically significant and produced an adequate R2 value (0.9898) and a low probability value (<0.0001). The optimum level for each factor was found to be 0.567% (w/v) NaCl, 21.851℃ and 0.765% (w/v) tryptone, respectively. Crude biosurfactant activity was found to be most affected by tryptone concentration; then temperature, and finally NaCl concentration. Our results may potentially facilitate large-scale biosurfactant production from B. pumilus IJ-1.

키워드

참고문헌

  1. Desai JD, Banat IM. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64. https://doi.org/10.1128/.61.1.47-64.1997
  2. Van Hamme JD, Singh A, Ward OP. 2006. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 24: 604-620. https://doi.org/10.1016/j.biotechadv.2006.08.001
  3. Banat IM, Makkar RS, Cameotra SS. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53: 495-508. https://doi.org/10.1007/s002530051648
  4. Toledo FL, Gonzalez-Lopez J, Calvo C. 2008. Production of bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture. Bioresour. Technol. 99: 8470-8475. https://doi.org/10.1016/j.biortech.2007.08.055
  5. Mukherjee S, Das P, Sen R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24: 509-515. https://doi.org/10.1016/j.tibtech.2006.09.005
  6. Christofi N, Ivshina IB. 2002. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929. https://doi.org/10.1046/j.1365-2672.2002.01774.x
  7. Mukherjee S, Das P, Sivapathasekaran C, Sen R. 2008. Enhanced production of biosurfactant by a marine bacterium on statistical screening of nutritional parameters. Biochem. Eng. J. 42: 254-260. https://doi.org/10.1016/j.bej.2008.07.003
  8. Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A. 2008. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223: 143-151. https://doi.org/10.1016/j.desal.2007.01.198
  9. Liyana-Pathirana C, Shahidi F. 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93: 47-56. https://doi.org/10.1016/j.foodchem.2004.08.050
  10. Montgomery D. 2005. Design and Analysis of Experiments, pp. 478-553. (8th ed). John Wiley and Sons, USA.
  11. Kalil SJ, Maugeri F, Rodrigues MI. 2000. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 35: 539-550. https://doi.org/10.1016/S0032-9592(99)00101-6
  12. Myers RH, Montgomery DC. 2002. Response surface methodology: process and product optimization using designed experiments, (2nd ed). John Wiley & Sons, USA.
  13. Chauhan AK, Survase SA, Kishenkumar J, Annapure US. 2009. Medium optimization by orthogonal array and response surface methodology for cholesterol oxidase production by Streptomyces lavendulae NCIM2499. J. Gen. Appl. Microbiol. 55: 171-180. https://doi.org/10.2323/jgam.55.171
  14. Dutta JR, Dutta PK, Banerjee R. 2004. Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models. Process Biochem. 39: 2193-2198. https://doi.org/10.1016/j.procbio.2003.11.009
  15. Oskouie SFG, Tabandeh F, Yakhchali B, Eftekhar F. 2008. Response surface optimization of medium composition for alkaline protease production by Bacillus clausii. Biochem. Eng. J. 39: 37-42. https://doi.org/10.1016/j.bej.2007.08.016
  16. Singh RS, Singh H, Saini GK. 2009. Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1. Appl. Biochem. Biotechnol. 152: 42-53. https://doi.org/10.1007/s12010-008-8180-9
  17. Xiong YH, Liu JZ, Song HY, Ji LN. 2004. Enhanced production of extracellular ribonuclease from Aspergillus niger by optimization of culture conditions using response surface methodology. Biochem. Eng. J. 21: 27-32. https://doi.org/10.1016/j.bej.2004.04.010
  18. Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN. 2008. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC2574. Bioresour. Technol. 99: 7875-7880. https://doi.org/10.1016/j.biortech.2008.02.027
  19. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Ghobadi Z. 2010. Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chem. Eng. J. 163: 188-194. https://doi.org/10.1016/j.cej.2010.06.044
  20. Rodrigues L, Teixeira J, Oliveira R, van der Mei HC. 2006. Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem. 41: 1-10. https://doi.org/10.1016/j.procbio.2005.01.030
  21. Chen HC. 1996. Optimizing the concentrations of carbon, nitrogen and phosphorous in a citric acid fermentation with response surface method. Food Biotechnol. 10: 13-27. https://doi.org/10.1080/08905439609549898
  22. Rao PV, Jayaraman K, Lakshmanan CM. 1993. Production of lipase by Candida rugosa in solid state fermentation. 2: Medium optimization and effect of aeration. Process Biochem. 28: 391-395. https://doi.org/10.1016/0032-9592(93)80026-D
  23. Park EJ, Kim JY. 2015. Characteristics of culture conditions for the production of biosurfactant by Bacillus pumilus IJ-1. J. Appl. Biol. Chem. 58: 81-88. https://doi.org/10.3839/jabc.2015.014
  24. Kim JY. 2014. Isolation and characterization of a biosurfactantproducing bacterium Bacillus pumilus IJ-1 from contaminated crude oil collected in Taean, Korea. J. Korean Soc. Appl. Biol. Chem. 57: 5-14. https://doi.org/10.1007/s13765-013-4236-9
  25. Hur SH, Yang JS, Hong JH. 2002. Production of biosurfactant using Bacillus spp.. J. Korean Soc. Food Sci. Nutr. 31: 389-393. https://doi.org/10.3746/jkfn.2002.31.3.389
  26. Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84. https://doi.org/10.1007/BF00327807
  27. Lang S. 2002. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid Interface Sci. 7: 12-20. https://doi.org/10.1016/S1359-0294(02)00007-9
  28. Zajic JE, Seffens W. 1984. Biosurfactants. CRC Crit. Rev. Biotechnol. 1: 87-107. https://doi.org/10.3109/07388558309082580
  29. Box GEP, Wilson KB. 1951. On the experimental attainment of optimum conditions. J. Royal Statist. Soc. Ser. B 13: 1-45.
  30. Ren X, Yu D, Han S, Feng Y. 2006. Optimization of recombinant hyperthermophilic esterase production from agricultural waste using response surface methodology. Bioresour. Technol. 97: 2345-2349. https://doi.org/10.1016/j.biortech.2005.10.027
  31. Kim BS, Kim JY. 2013. Optimization of culture conditions for the production of biosurfactant by Bacillus subtilis JK-1 using response surface methodology. J. Korean Soc. Appl. Biol. Chem. 56: 279-287. https://doi.org/10.1007/s13765-013-3044-6
  32. Fooladi T, Moazami N, Abdeshahian P, Kadier A, Ghojavand H, Wan Yusoff WM, et al. 2016. Characterization, production and optimization of lipopeptide biosurfactant by new strain Bacillus pumilus 2IR isolated from an Iranian oil field. J. Pet. Sci. Eng. 145: 510-519. https://doi.org/10.1016/j.petrol.2016.06.015
  33. Datta P, Tiwari P, Pandey LM. 2018. Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Bioresour. Technol. 270: 439-448. https://doi.org/10.1016/j.biortech.2018.09.047
  34. Kiran GS, Anto Thomas T, Selvin J, Sabarathnam B, Lipton AP. 2010. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour. Technol. 101: 2389-2396. https://doi.org/10.1016/j.biortech.2009.11.023