DOI QR코드

DOI QR Code

An Experimental Study on the Development of Electro Magnetic Pulse Shielding Cement Using Milled Carbon Fiber

저 직경 카본섬유를 사용한 전자기 펄스 차폐 시멘트 개발에 관한 실험적 연구

  • 민태범 (성신양회(주) 기술연구소)
  • Received : 2020.09.28
  • Accepted : 2020.10.22
  • Published : 2020.12.30

Abstract

In this study, physical properties and EMP shielding performance evaluation of cement paste according to the amount of milled carbon fiber was conducted to develop EMP shielding cement using carbon fiber. The length of the milled carbon fiber used was 100㎛, and it was used as a cement admixture because it showed a powdery form to the naked eye. As a result of the experiment, when 5% of the amount of cement was used, the milled carbon fiber was effective in compressive strength and EMP shielding, and the shielding effect did not increase when used beyond that. As a result of examining the EMP shielding performance according to the thickness of the specimen, the plain without milled carbon fiber had no effect of increasing the shielding rate according to the thickness. The shielding performance of the specimens using the milled carbon fiber increased as the thickness increased. Therefore, in order to increase the EMP shielding rate when comparing and evaluating the performance according to the amount of milled carbon fiber used and the thickness of the specimen, 5% of the milled carbon fiber used is optimal. In addition, the method of increasing the thickness is considered to be effective.

본 연구에서는 탄소계 섬유를 이용하여 EMP차페 시멘트 개발을 위해 저 직경 카본섬유 사용량에 따른 시멘트 페이스트의 물리적 특성과 EMP차폐 성능평가를 실시하였다. 사용된 저 직경 카본섬유의 길이는 100㎛의 크기로서 육안으로는 분말형태를 나타내기 때문에 시멘트 혼화재 개념으로 사용하였다. 실험결과 저 직경 카본섬유 시멘트 사용량 대비 5% 사용 하였을시 압축강도 및 EMP차폐에 효과가 있었으며 그 이상의 사용시에는 차폐효과는 증가 하지 않았다. 또한 실험체 두께에 따른 EMP차폐성능 검토 결과 저 직경 카본섬유가 사용되지 않은 Plain은 두께에 따른 차폐율 증가 효과가 없었으나 저 직경 카본섬유가 사용된 실험체들은 두께 증가에 따라 차폐성능이 증가 하였다. 따라서 저 직경 카본섬유 사용량과 실험체 두께에 따른 성능을 비교평가 하였을시 EMP차폐율 증가시키기 위해서는 저 직경 카본섬유 사용량은 5%가 최적이며 사용량을 증가시키는 것보다 두께를 증가시키는 방법이 효과적일 것으로 사료된다.

Keywords

References

  1. Chen, B., Wu, K., Yao, W. (2004). Conductivity of carbon fiber reinforced cement-based composites, Cement and Concrete Composites, 26(4), 291-297. https://doi.org/10.1016/S0958-9465(02)00138-5
  2. Choi, H.J., Park, J.H., Min, T.B., Jang, H.O., Lee, H.S. (2019). An experimental study on the evaluation of EMP shielding performance of concrete applied with ATMSM using Zn-Al alloy wire, The Proceedings of the Korea Electromagnetic Engineering Society, 19(3), 209-218.
  3. Chun, C.S. (2016). North Korean nuclear crisis after the fifth nuclear test and South Korea's future strategy, The Journal of Strategic Studies, 23(3), 7-38. https://doi.org/10.1080/01402390008437798
  4. Chung, D.D.L. (2001). Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39(2), 279-285. https://doi.org/10.1016/S0008-6223(00)00184-6
  5. Dai, Y., Sun, M., Liu, C., Li, Z. (2010). Electromagnetic wave absorbing characteristics of carbon black cement-based, Composites, 32(7), 508-513.
  6. Dou, Z., Wu, G., Huang, X., Sun, D., Jiang, L. (2007). Electromagnetic shielding effectiveness of aluminum ally-fly ash composites, Composites Part A: Applied Science and Manufacturing, 38(1), 186-191. https://doi.org/10.1016/j.compositesa.2006.01.015
  7. Jin, L., Haiyan, Z., Ping, L., Xijiang, Y., Guoxun, Z. (2014). The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite, IEEE Transactions on Electromagnetic Compatibility, 56(2), 328-334. https://doi.org/10.1109/TEMC.2013.2280140
  8. Kim, H.G., Lee, H.K. (2008). Development of electromagnetic wave absorbing/shielding construction materials, Magazine of the Korea Concrete Institute, 20(6), 70-74 [in Korean]. https://doi.org/10.22636/MKCI.2008.20.6.70
  9. Kim, H.S. (2013). Reality and developmental methods of EMP threats, Defense & Technology, Sept; 414, 98-103.
  10. Kim, Y.J., Yi, C.K. (2015). The UHF wave shielding effectiveness of mortar with conductive inclusions, Journal of the Architectural Institute of Korea Structure & Construction, 31(4), 103-110. https://doi.org/10.5659/JAIK_SC.2015.31.4.103
  11. Lee, W.G. (2013). EMP protecting measurements and required technology, The Proceedings of the Korea Electromagnetic Engineering Society, 24(1), 79-96 [in Korean].
  12. Xu, Z., Hao, H. (2014). Electromagnetic interference shielding effectiveness of aluminum foams with different porosity, Journal of Alloys and Compounds, 617(25), 207-213. https://doi.org/10.1016/j.jallcom.2014.07.188