DOI QR코드

DOI QR Code

Impact of Anti-Reflective Coating on Silicon Solar Cell and Glass Substrate : A Brief Review

  • Zahid, Muhammad Aleem (College of Information and communication, Sungkyunkwan University) ;
  • Khokhar, Muhammad Quddamah (College of Information and communication, Sungkyunkwan University) ;
  • Cho, Eun-Chel (College of Information and communication, Sungkyunkwan University) ;
  • Cho, Young Hyun (College of Information and communication, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and communication, Sungkyunkwan University)
  • Received : 2020.01.03
  • Accepted : 2020.02.14
  • Published : 2020.03.31

Abstract

The most important factor in enhancing the performance of an optical device is to minimize reflection and increasing transmittance of light for a broad wavelength range. The choice of appropriate coating material is crucial in decreasing reflection losses at the substrate. The purpose of this review is to highlight anti-reflection coating (ARC) materials that can be applied to silicon solar cell and glass substrate for minimizing reflection losses. The optical and electrical behavior of ARC on a substrate is highly dependent on thickness and refractive index (RI) of ARC films that are being deposited on it. The coating techniques and performance of single and multi-layered ARC films after coated on a substrate in a wide range of wavelength spectrum will be studied in the paper.

Keywords

References

  1. Kumaragurubaran, B., Anandhi, S., "Reduction of reflection losses in solar cell using anti-reflective coating," International conference on computation of power, energy, information and communication ICCPEIC, 2014.
  2. Keshavarz Hedayati, M., Elbahri M. , "Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review," Materials, 9.6, 2016.
  3. He, X. D., Torrance, K. E., Sillion, F. X., Greenberg, D. P. "A comprehensive physical model for light reflection," ACM SIGGRAPH computer graphics Vol. 25, No. 4, pp. 175-186, 1991. https://doi.org/10.1145/127719.122738
  4. Lim, K. P., Ng, D. K., Wang, Q., "Broadband antireflection for a high-index substrate using $SiN_x/SiO_2$ by inductively coupled plasma chemical vapour deposition," J. Phys. D Appl. Phys., 085302, 49.8, 2016. https://doi.org/10.1088/0022-3727/49/8/085302
  5. Hanaei, Hengameh, M. Khalaji Assadi, and R. Saidur., "Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review", Renewable and Sustainable Energy Reviews, Vol. 59, pp. 620-635, 2016. https://doi.org/10.1016/j.rser.2016.01.017
  6. Prevo, B. G., Hon, E. W., Velev, O. D., "Assembly and characterization ofvcolloid-based antireflective coatings on multicrystalline silicon solar cells," J. Mater. Chem., Vol. 17, pp. 791-799, 2007. https://doi.org/10.1039/b612734g
  7. Waitaa, S. M., Adudaa, B. O., Mwaboraa, J., Granqvistb, C. G., Lindquistb, S.-E., Niklassonb, G., Hagfeldtc, A., Boschloo, G., "Electron transport and recombination in dye sensitized solar cells fabricated from obliquely sputtered and thermally annealed TiO2 films," J. Electroanal. Chem.. Vol. 605, No. 2, pp. 151-156, 2007. https://doi.org/10.1016/j.jelechem.2007.04.001
  8. Maas, R., Mann, S. A., Sounas, D. L., Alu, A., Garnett, E. C., Polman,"Generalized antireflection coatings for complex bulk meta materials," Physical Review B 195433, 93.19, 2016. https://doi.org/10.1103/PhysRevB.93.195433
  9. Kobiyama, M., "Basic theory of thin film optics (in Japanese)," Optronics Co. Ltd., Shinjuku, Tokyo, Japan, 2002.
  10. Born, M., Wolf, E. Principles of optics, 7th ed., Cambridge Univ. Press, Cambridge, U.K. p. 67, 1999.
  11. Sagar, R., Asha, R., "Increasing the Silicon Solar cell efficiency with transition metal oxide nano-thin films as anti-reflection coatings," Materials Research Express, 2020.
  12. Mahadik, D. B., Lakshmi, R. V., Barshilia, H. C., "High performance single layer nano-porous antireflection coatings on glass by sol-gel process for solar energy applications," Sol. Energy Mater. Sol. Cells Vol. 140, pp. 61- 68, 2015. https://doi.org/10.1016/j.solmat.2015.03.023
  13. Zhu, L. Q., Liu, Y. H., Zhang, H. L., Xiao, H., Guo, L. Q., "Atomic layer deposited $Al_2O_3$ films for anti-reflectance and surface passivation applications," Applied Surface Science, Vol. 288, pp. 430-434, 2014. https://doi.org/10.1016/j.apsusc.2013.10.051
  14. Ali, K., Khan, S. A., Jafri., M. Z. M., "Effect of double layer ($SiO_2/TiO_2$) anti-reflective coating on silicon solar cells," Int. J. Electrochem. Sci, Vol. 9, pp. 7865-7874, 2014.
  15. Ali, K., Khan, S. A., Jafri, M. Z. M., "Structural and optical properties of $ITO/TiO_2$ anti-reflective films for solar cell applications," Nanoscale research letters, 9.1, 175, 2014. https://doi.org/10.1186/1556-276x-9-175
  16. Dhungel, S. K., Yoo, J., Kim, K., Jung, S., Ghosh, S., Yi, J. "Double-layer antireflection coating of $MgF_2/SiN_x$ for crystalline silicon solar cells," J. Korean Phys. Soc., Vol. 49, No. 3, pp. 885-889, 2006.
  17. Jung, J., Jannat, A., Akhtar, M. S., Yang, O., “Sol-Gel Deposited Double Layer TiO2 and Al2O3 Anti-Reflection Coating for Silicon Solar Cell,” J. Nanosci. Nanotechnol., Vol. 18, No. 2, pp. 1274-1278, 2018. https://doi.org/10.1166/jnn.2018.14928
  18. Medhat, M., El-Zaiat, E. S., Farag, S., Youssef, G., Alkhadry, R., “Enhancing silicon solar cell efficiency with double layer antireflection coating,” Turkish Journal of Physics, Vol. 40, No. 1, pp. 30-39, 2016. https://doi.org/10.3906/fiz-1508-14
  19. Sharma, R., “Silicon nitride as antireflection coating to enhance the conversion efficiency of silicon solar cells,” Turkish Journal of Physics, Vol. 42, No. 4, pp. 350-355, 2018. https://doi.org/10.3906/fiz-1801-28
  20. Shah, D. K., Han, S. Y., Akhtar, S. M., Yang, O., Kim, C. Y., “Effect of Ag Doping in Double Antireflection Layer on Crystalline Silicon Solar Cells,” Nanosci. Nanotechnol. Lett., Vol. 11, No. 2, pp. 159-167, 2019. https://doi.org/10.1166/nnl.2019.2864
  21. Sahouane, N., Abdellatif. Z., "Optimization of antireflection multilayer for industrial crystalline silicon solar cells," Energy Procedia, Vol. 44, pp. 118-125, 2014. https://doi.org/10.1016/j.egypro.2013.12.017
  22. Kesmez, O., Akarsu, E., Camurlu, H. E., Yavuz, E., Akarsu, M., Arpac, E., “Preparation and characterization of multilayer anti-reflective coatings via sol-gel process,” Ceram. Int., Vol. 44, No. 3, pp. 3183-3188, 2018. https://doi.org/10.1016/j.ceramint.2017.11.088
  23. Priyadarshini, B. G., Sharma, A. K., “Design of multi-layer anti-reflection coating for terrestrial solar panel glass,” Bulletin of Materials Science, Vol. 39, No. 3, pp. 683-689, 2016. https://doi.org/10.1007/s12034-016-1195-x
  24. Salih, A. T., Najim, A. A., Muhi, M. A., Gbashi, K. R. "Single-material multilayer ZnS as anti-reflective coating for solar cell applications," Opt. Commun., Vol. 388, pp. 84-89, 2017. https://doi.org/10.1016/j.optcom.2016.12.035