DOI QR코드

DOI QR Code

Optimizing Design Constants of Higher-Order Switching Differentiator

고차 스위칭 미분 추정기의 설계 상수 최적화

  • Park, Jang-Hyun (Dept. of Electrical and Control Engineering, Mokpo National University)
  • Received : 2020.09.03
  • Accepted : 2020.10.06
  • Published : 2020.12.31

Abstract

A switching differentiator that can estimate the 1st-order time-derivative of a time-varying signal was proposed, and it is extended later to the higher-order switching differentiator(HOSD) that can observe higher-order time-derivatives of a time-varying signal in previous works. By using HOSD, higher-order time-derivatives can be estimated without peaking or chattering, and it has an asymptotic tracking performance. However, there exist many design constants to be determined in HOSD. In this paper, a method of reducing the number of design constants is proposed to solve the problem. Simulations reveal the effectiveness of the proposed method.

시변 신호의 1차 시간 미분을 추정하기 위해서 [1]에서 점근적 수렴 특성을 갖는 스위칭 미분기(switching differentiator)[1]가 제안되었으며, 그것의 고차 미분 추정으로 확장한 고차 스위칭 미분기(higher-order switching differntiaor, HOSD)가 [2]에서 제안되었다. 하지만 HOSD의 경우 n차 미분까지 추정한다면 결정해야 할 상수들의 개수가 2n개이므로 HOSD를 설계하는 데 있어서 다수의 설계상수를 결정해야 한다는 어려움이 있다. 본 논문에서는 HOSD의 점근적 추종 성능은 유지하면서 결정해야 할 설계 상수들의 개수를 줄이는 방법과 다양한 모의실험으로 구해진 최적의 설계 상수 값들을 제시한다. 시변 함수들의 시간 도함수를 추정하는 모의실험을 통해서 제시된 방법의 유효성을 보인다.

Keywords

Acknowledgement

This Research was supported by Research Funds of Mokpo National University in 2018.

References

  1. J.-H. Park, S.-H. Kim, and T.-S. Park, "Asymptotically convergent switching differentiator," Int J Adapt Control Signal Process, vol.33, pp. 557566, 2019. DOI: 10.1002/acs.2969
  2. J.-H. Park, S.-H. Kim, and T.-S. Park, "Asymptotically Convergent Higher-Order Switching Differentiator," Mathematics, vol. 8, no.2, pp.185:1-17, 2020. DOI: 10.3390/math8020185
  3. J. Han, "From PID to Active Disturbance Control," IEEE Trans. Ind. Electron, vol.56, pp. 900-906, 2009. DOI: 10.1109/TIE.2008.2011621
  4. P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang, "Estimation of Angular Velocity and Acceleration from Shaft-Encoder Measurements," Int. J. Robot. Res., vol.17, pp.1225-1233, 1998. DOI: 10.1109/ROBOT.1992.220228
  5. H. K. Khalil, "High-Gain Observers in Feedback Control: Application to Permanent Magnet Synchronous Motors," IEEE Control Syst. Mag., vol.37, pp.25-41, 2017. DOI: 10.1109/MCS.2017.2674438
  6. A. Levant, "Non-homogeneous finite-time-convergent differentiator," Proceedings of the 48th IEEE Conference on Decision and Control, pp. 8399-8404, 2009. DOI: 10.1109/CDC.2009.5400277
  7. J. F. Carneiro and F. G. D. Almeida, "On the Influence of Velocity and Acceleration Estimators on a Servopneumatic System Behaviour," IEEE Access, vol.4, pp.6541-6553, 2016. DOI: 10.1109/ACCESS.2016.2607284
  8. J.-H. Park, S.-H. Kim, and T.-S. Park, "Output-Feedback Adaptive Neural Controller for Uncertain Pure-Feedback Nonlinear Systems Using a High-Order Sliding Mode Observer," IEEE Trans. Neural Network and Learning System, vol.30, no.5, pp.1596-1601, 2019. DOI: 10.1109/TNNLS.2018.2861942
  9. J.-H. Park, S.-H. Kim, and T.-S. Park, "Approximation-Free State-Feedback Backstepping Controller for Uncertain Pure-Feedback Nonautonomous Nonlinear Systems Based on Time-Derivative Estimator," IEEE Access, vol.7, pp.126634-126641, 2019. DOI: 10.1109/ACCESS.2019.2938595
  10. J.-H. Park, T.-S. Park, and S.-H. Kim, "Approximation-Free Output-Feedback Non-Backstepping Controller for Uncertain SISO Nonautonomous Nonlinear Pure-Feedback Systems," Mathematics, vol.7, pp.456:1-11, 2019. DOI: 10.3390/math7050456
  11. J.-H. Park, S.-H. Kim, and T.-S. Park, "Approximation-Free Output-Feedback Control of Uncertain Nonlinear Systems Using Higher-Order Sliding Mode Observer," J. Dynamics Systems, Measurement, and Control, vol.140, no.12, pp.124502:1-5, 2018. DOI: 10.1115/1.4040664