DOI QR코드

DOI QR Code

Surface Milling for the Study of Pore Structure in Shale Reservoirs

셰일 저류층 내 공극 구조 연구를 위한 표면 밀링

  • Park, Sun Young (Oil & Gas Research Center, Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Jiyoung (Oil & Gas Research Center, Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyun Suk (Oil & Gas Research Center, Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 박선영 (한국지질자원연구원 석유해저연구본부 석유가스연구센터) ;
  • 최지영 (한국지질자원연구원 석유해저연구본부 석유가스연구센터) ;
  • 이현석 (한국지질자원연구원 석유해저연구본부 석유가스연구센터)
  • Received : 2020.11.27
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

비전통 저류층에서 에너지 자원의 회수율을 높이기 위해서는 저류층 내의 미세 공극 형태와 연결도 등을 포함하는 공극 구조 연구가 필수적이다. 본 연구에서는 셰일 저류층 내 나노스케일의 공극 구조 연구에 적합한 조건과 방법을 찾기 위해 집속 이온 빔 시스템(Focused Ion Beam, FIB)과 이온 밀링 시스템(Ion Milling System, IMS)을 이용하여 분석을 진행하였다. 셰일 저류층 내 공극 구조 연구를 위해 리아드 분지에서 획득된 A-068 시추공의 시료를 사용하였다. 각 시료마다 특성이 다르기 때문에 시료 전처리 방법과 조건을 달리하여 최적의 조건을 찾았고 FE-SEM을 이용하여 공극 이미지를 획득하였다. 연구 결과 국소 부위의 공극구조를 관찰하기 위해서는 FIB를 사용하여 시표 표면을 밀링 후 바로 공극 이미지를 얻는 것이 효율적이고 반면에 넓은 면적을 단시간에 밀링하여 여러 공극 구조를 관찰하기 위해서는 IMS를 이용해야 한다는 것을 확인했다. 특히 탄산염 광물 함량이 높고 강도가 큰 암석에 대해서는 FIB보다는 IMS를 활용하여 밀링을 수행해야 공극 구조 관찰이 가능하다는 사실이 밝혀졌다. 본 연구를 통해 셰일 저류층 내 공극 구조 관찰을 위한 방법이 정립되었으며 향후 이를 이용한 셰일 가스 저류층 시료 분석을 통해 공극의 크기나 형태가 셰일가스 회수 증진에 미치는 영향을 밝힐 수 있을 것이다.

Keywords

References

  1. Bassim, N., Scott, K. and Giannuzzi, L.A., 2014, Recent advances in focused ion beam technology and applications. MRS Bulletin, 39, 317-325. https://doi.org/10.1557/mrs.2014.52
  2. Breyer, J.A., 2012, Shale Reservoirs-Giant Resources for the 21st Century. American Association of Petroleum Geologists.
  3. Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L., Melnichenko, Y.B., Radlinski, A.P. and Blach, T.P., 2013, Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606-616. https://doi.org/10.1016/j.fuel.2012.06.119
  4. Er, C., Li, Y., Zhao, J., Wang, R., Bai, Z. and Han, Q., 2016, Pore formation and occurrence in the organic-rich shales of the Triassic Chang-7 Member, Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Geoscience, 1, 435-444. https://doi.org/10.1016/j.jnggs.2016.11.013
  5. Gasparik, M., Ghanizadeh, A., Bertier, P., Gensterblum, Y., Bouw, S. and Krooss, B.M., 2012, High-Pressure Methane Sorption Isotherms of Black Shales from The Netherlands. Energy & Fuels, 26, 4995-5004. https://doi.org/10.1021/ef300405g
  6. Goral, J., Andrew, M., Olson, T. and Deo, M., 2020, Correlative core- to pore-scale imaging of shales. Marine and Petroleum Geology, 111, 886-904. https://doi.org/10.1016/j.marpetgeo.2019.08.009
  7. Han, Y., Kwak, D., Choi, S., Shin, C., Lee, Y. and Kim, H., 2017, Pore Structure Characterization of Shale Using Gas Physisorption: Effect of Chemical Compositions. Minerals, 7, 66. https://doi.org/10.3390/min7050066
  8. Hu, G., Pang, Q., Jiao, K., Hu, C. and Liao, Z., 2020, Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition. Marine and Petroleum Geology, 116, 104314. https://doi.org/10.1016/j.marpetgeo.2020.104314
  9. Klaver, J., Desbois, G., Littke, R. and Urai, J.L., 2015, BIBSEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59, 451-466. https://doi.org/10.1016/j.marpetgeo.2014.09.020
  10. Knapp, L.J., Ardakani, O.H., Uchida, S., Nanjo, T., Otomo, C. and Hattori, T., 2020, The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. International Journal of Coal Geology, 227, 103525. https://doi.org/10.1016/j.coal.2020.103525
  11. Li, H., Wani, I.H., Hayat, A., Jafri, S.H.M. and Leifer, K., 2015, Fabrication of reproducible sub-5nm nanogaps by a focused ion beam and observation of Fowler-Nordheim tunneling. Applied Physics Letters, 107, 103108. https://doi.org/10.1063/1.4930821
  12. Loucks, R.G., Reed, R.M., Ruppel, S.C. and Hammes, U., 2012, Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96, 1071-1098. https://doi.org/10.1306/08171111061
  13. Milliken, K.L., Rudnicki, M., Awwiller, D.N. and Zhang, T., 2013, Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97, 177-200. https://doi.org/10.1306/07231212048
  14. Olson, T., 2016, Imaging Unconventional Reservoir Pore Systems. American Association of Petroleum Geologists.
  15. Tang, X., Jiang, Z., Jiang, S. and Li, Z., 2016, Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Marine and Petroleum Geology, 78, 99-109. https://doi.org/10.1016/j.marpetgeo.2016.09.010
  16. Wang, Jiang, Jiang, Chang, Zhu, Li and Li, 2019, Full-Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Mercury Intrusion Porosimetry. Minerals, 9, 543. https://doi.org/10.3390/min9090543
  17. Xu, S., Gou, Q., Hao, F., Zhang, B., Shu, Z., Lu, Y. and Wang, Y., 2020, Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Marine and Petroleum Geology, 114, 104211. https://doi.org/10.1016/j.marpetgeo.2019.104211
  18. Yang, F., Ning, Z.F., Wang, Q., Zhang, R. and Krooss, B.M., 2016, Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism. International Journal of Coal Geology, 156, 12-24. https://doi.org/10.1016/j.coal.2015.12.015
  19. Zhou, S., Yan, G., Xue, H., Guo, W. and Li, X., 2016, 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM. Marine and Petroleum Geology, 73, 174-180. https://doi.org/10.1016/j.marpetgeo.2016.02.033