DOI QR코드

DOI QR Code

Seepage-Advection-Dispersion Numerical Analysis of Offshore Rubble Mound Revetment Landfill Under Transient Flow

비정상류 조건에서 경사식호안매립장에 대한 침투이류 분산해석

  • Received : 2020.08.09
  • Accepted : 2020.10.09
  • Published : 2020.12.30

Abstract

This study analyzes contaminant movement under transient flow in a rubble mound revetment offshore waste landfill barrier system that prevents contaminant runoff. The barrier system consists of bottom layer and side barrier. For the bottom layer system, impermeable clay layer is used. For the side barrier system, the HDPE barrier sheet (primary element) plays the main role, and the intermediate protection layer (supplementary element) is responsible for the barrier. Seepage, advection, dispersion numerical analysis was carried out using SEEP / W and CTRAN / W programs. As a result, under abnormal conditions considering the fluctuation in tidal range, the volume and direction of the flow velocity vector of the pore water change with time and the dispersion concentration of the contaminant changes. When comparing the case of 2 m tidal range and 8 m tidal range, the larger the tide value, the higher the concentration of contaminant under abnormal conditions. It was found that the rate of change of the concentration of the contaminant changed depending on the change in the tidal range, and as a result, the outflow of the pollutant was smaller than that in the steady flow state.

본 연구는 비정상류 조건에서 오염원 유출을 방지하기 위한 경사식호안 해상폐기물매립장 차수시스템에서 오염원의 이동을 알아보기 위하여 해석을 수행하였다. 차수시스템은 바닥과 측면으로 구성하였다. 바닥차수시스템은 불투수 점토층이 측면차수시스템은 HDPE 차수시트가 주 역할을 하고 부수적으로 중간보호층이 차수를 담당한다. SEEP/W와 CTRAN/W 프로그램을 이용하여 침투·이류 분산 해석을 실시하였다. 해석결과, 조석에 따른 수위변동을 고려한 비정상류 조건 하 에서의 전수두, 간극수의 유속벡터가 시간에 따라 크기 및 방향이 바뀌고 오염원 분산 농도가 변화하였다. 조석차 2m일 경우와 8m일 경우를 비교하면 조차가 클수록 비정상류조건에서의 오염물의 농도가 증가하였다. 오염원 농도 변화율이 조석의 변화에 따라 오염원 농도 변화율 기울기의 변화되어 결과적으로 오염원 유출이 정상류 상태에 비하여 작은 것으로 나타났다.

Keywords

References

  1. Chae, K. S., Lee, S. P. and Oh, M. H. (2011), "Design and construction technology of marine waste landfill sites", Journal of the Korean Civil Engineering and Textile Society, Vol.10, No.4, pp.16-24.
  2. Devlin, J. F. and Parker, B. L. (1996), "Optimum hydraulic conductivity to limit contaminant flux through cutoff walls", Groundwater, Vol.34, No.4, pp.719-726. https://doi.org/10.1111/j.1745-6584.1996.tb02060.x
  3. Foose, G.J. 2010. A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Management, Vol.30, No.8-9, pp.1577-1586. https://doi.org/10.1016/j.wasman.2010.02.027
  4. GEO-SLOPE (2012a), Seepage modeling with SEEP/W, GEOSLOPE International Ltd.
  5. GEO-SLOPE (2012b), Contaminant modeling with CTRAN/W, GEO-SLOPE International Ltd.
  6. Hwang, W. K., Kim, H. E. Choi, H. adn Kim, H. E. (2019b), "Seepage-advection-dispersion numerical analysis of barrier system of offshore rubble mound revetment landfill Under Steady Flow", Journal of Korean Geosynthetics Society, Vol.18, No.4, pp.1-10.
  7. Hwang, W. K., Kim, H. E. Choi, H. and Kim, H. E. (2019a), "Proper regulation of the cutoff system in offshore landfill built on clay ground with double walls", Journal of the Korean Geotechnical Society, Vol.35, No.8, pp.5-15. https://doi.org/10.7843/KGS.2019.35.8.5
  8. Hwang, W. K., Oh, M. H., Kim, T. H. and Kim, H. E. (2018), "Evaluation of optimal performance of hydraulic barriers in offshore landfill using seepage-advection-dispersion analysis under steady state flow", Journal of Korean Society of Coastal and Ocean Engineers, Vol.30, No.2, pp.61-68 https://doi.org/10.9765/KSCOE.2018.30.2.61
  9. Kwon, O. S., Oh, M. H. and Chae, K. S. (2012), Guidelines for the design, construction, and management of managed wastes reclaimed embankment, CIR publishing, Seoul, Korea.
  10. Neville, C. J. and Andrews, C. B. (2006), "Containment criterion for contaminant isolation by cutoff Walls", Groundwater, Vol.44, No.5, pp.682-686.
  11. Oh, M. H., Kwon, O. S., Kim, G. H. and Chae, K. S. (2012), "Introduction on offshore waste landfill and potential sites", Journal of the Korean Civil Engineering Society, Vol.160, No.11, pp.40-48.
  12. Oh, M. H., Park, H. Y., and Kwon, O. S. (2016), "Analysis on Seepage Behavior According to Extended length of HDPE Sheet of Rubble Mound Revetment at Offshore Landfill", Journal of the Korean Geosynthetics Society, Vol.15, No.3, pp.39-47. https://doi.org/10.12814/jkgss.2016.15.3.039
  13. Osaka Bay Regional Offshore Environmental Improvement Center (2018), Osaka Bay Phoenix Project, Osaka : Osaka Bay Regional Offshore Environmental Improvement Center.
  14. Park, H. Y., Oh, M. H. and Kwon, O. S., 2016. Analysis on Contaminant Transport according to the Embedded Depth of Vertical Barrier of Offshore Landfill. Journal of the Korean Geo-Environmental Society, 78(9); 29-37. https://doi.org/10.14481/jkges.2016.17.8.29
  15. Park, J.-O., Song, M.-Y. and Park, C.-H. (2006), "Analyses of Correlation Between Groundwater Movement and Tidal Effect in West Costal Landfill Area", The Journal of Engineering Geology, Vol.16, No.3, pp.293-300.
  16. Rubin, H. & Rabideau, A.J. 2000. Approximate evaluation of contaminant transport through vertical barriers. Journal of Contaminant Hydrology, Vol.40, No.4, pp.311-333. https://doi.org/10.1016/S0169-7722(99)00060-1