DOI QR코드

DOI QR Code

Calyxaprenols A-D, New Merohexaprenoid Metabolites from the Marine Sponge Calyx sp.

  • Kim, Chang-Kwon (Molecular Targets Program, Center for Cancer Research, National Cancer Institute) ;
  • Gustafson, Kirk R. (Molecular Targets Program, Center for Cancer Research, National Cancer Institute)
  • Received : 2020.09.19
  • Accepted : 2020.11.26
  • Published : 2020.12.31

Abstract

Four new merohexapenoids named calyxaprenols A-D (1 - 4), together with the known compound haliclotriol A (5), have been isolated from the marine sponge Calyx sp. which was collected from the southwest islands of Palau. Based on comprehensive spectroscopic analyses, calyxaprenols A (1) and B (2) were determined to be pentacyclic hexaprenoids that are appended to a glycolic acid-substituted phenol moiety, whereas calyxaprenols C (3) and D (4) possess a tricyclic hexaprenoid skeleton joined to a hydroquinone ring. Identification of new merohexaprenoids from a Calyx sponge expands the known taxonomic distribution of this sparsely distributed class of marine metabolites and increases the chemical diversity described for this genus of marine sponge.

Keywords

References

  1. Yunker, M. B.; Scheuer, P. J. J. Am. Chem. Soc. 1978, 100, 307-309. https://doi.org/10.1021/ja00469a065
  2. Smith, T. E. Mar. Drugs 2017, 15, 285. https://doi.org/10.3390/md15090285
  3. Kashman, Y.; Isaacs, S. Tetrahedron Lett. 1992, 33, 2227-2230. https://doi.org/10.1016/0040-4039(92)88184-7
  4. Isaacs, S.; Hizi, A.; Kashman, Y. Tetrahedron 1993, 49, 4275-4282. https://doi.org/10.1016/S0040-4020(01)85743-4
  5. Fukami, A.; Ikeda, Y.; Kondo, S.; Naganawa, H.; Takeuchi, T.; Furuya, S.; Hirabayashi, Y.; Shimoike, K.; Hosaka, S.; Watanabe, Y.; Umezawa, K. Tetrahedron Lett. 1997, 38, 1201-1202. https://doi.org/10.1016/S0040-4039(97)00016-6
  6. Gray, C. A.; de Lira, S. P.; Silva, M.; Pimenta, E. F.; Thiemann, O. H.; Oliva, G.; Hajdu, E.; Andersen, R. J.; Berlinck, R. G. S. J. Org. Chem. 2006, 71, 8685-8690. https://doi.org/10.1021/jo060295k
  7. Blackburn, C. L.; Hopmann, C.; Sakowicz, R.; Berdelis, M. S.; Goldstein, L. S. B.; Faulkner, D. J. J. Org. Chem. 1999, 64, 5565-5570. https://doi.org/10.1021/jo9824448
  8. Kalaitzis, J. A.; de Almeida Leone, P.; Harris, L.; Butler, M. S.; Ngo, A.; Hooper, J. N. A.; Quinn, R. J. J. Org. Chem. 1999, 64, 5571-5574. https://doi.org/10.1021/jo990404d
  9. Quinn, R. J.; Kalaitzis, J. A. J. Nat. Prod. 1999, 62, 1682-1684. https://doi.org/10.1021/np9902035
  10. Blackburn, C. L.; Faulkner, D. J. Tetrahedron 2000, 56, 8429-8432. https://doi.org/10.1016/S0040-4020(00)00786-9
  11. West, L. M.; Faulkner, D. J. J. Nat. Prod. 2006, 69, 1001-1004. https://doi.org/10.1021/np050459c
  12. Crews, P.; Harrison, B. Tetrahedron 2000, 56, 9039-9046. https://doi.org/10.1016/S0040-4020(00)00758-4
  13. Williams, D. E.; SteinO, A.; de Voogd, N. J.; Mauk, A. G.; Andersen, R. J. J. Nat. Prod. 2012, 75, 1451-1458. https://doi.org/10.1021/np300345j
  14. Smith, T. E.; Hong, W.; Zachariah, M. M.; Harper, M. K.; Matainaho, T. K.; Wagoner, R. M. V.; Ireland, C. M.; Vershinin, M. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 18880-18885. https://doi.org/10.1073/pnas.1314132110
  15. Loya, S.; Tal, R.; Hizi, A.; Issacs, S.; Kashman, Y.; Loya, Y. J. Nat. Prod. 1993, 56, 2120-2125. https://doi.org/10.1021/np50102a014
  16. Thornburg, C. C.; Britt, J. R.; Evans, J. R.; Akee, R. K.; Whitt, J. A.; Trinh, S. K.; Harris, M. J.; Thompson, J. R.; Ewing, T. L.; Shipley, S. M.; Grothaus, P. G.; Newman, D. J.; Schneider, J. P.; Grkovic, T.; O'Keefe, B. R. ACS Chem. Biol. 2018, 13, 2484-2497. https://doi.org/10.1021/acschembio.8b00389
  17. Grkovic, T.; Akee, R. K.; Thornburg, C. C.; Trinh, S. K.; Britt, J. R.; Harris, M. J.; Evans, J. R.; Kang, U.; Ensel, S.; Henrich, C. J.; Gustafson, K. R.; Schneider, J. P.; O'Keefe, B. R. ACS Chem. Biol. 2020, 15, 1104-1114. https://doi.org/10.1021/acschembio.0c00139
  18. Fattorusso, E.; Magno, S.; Mayol, L.; Santacroce, C.; Sica, D. Tetrahedron 1975, 31, 1715-1716. https://doi.org/10.1016/0040-4020(75)85092-7
  19. Doss, G. A.; Djerassi, C. J. Am. Chem. Soc. 1988, 110, 8124-8128. https://doi.org/10.1021/ja00232a026
  20. Itoh, T.; Sica, D.; Djerassi, C. J. Org. Chem. 1983, 48, 890-892. https://doi.org/10.1021/jo00154a032
  21. Steiner, E.; Djerassi, C.; Fattorusso, E.; Magno, S.; Mayol, L.; Santacroce, C.; Sica, D. Helv. Chim. Acta 1977, 60, 475-481. https://doi.org/10.1002/hlca.19770600219
  22. Carballeira, N. M.; Pagan, M.; Rodriguez, A. D. J. Nat. Prod. 1998, 61, 1049-1052. https://doi.org/10.1021/np9801413
  23. Carballeira, N. M.; Pagan, M. J. Nat. Prod. 2000, 63, 666-669. https://doi.org/10.1021/np990529d
  24. Stierle, D. B.; Faulkner, D. J. J. Nat. Prod. 1991, 54, 1134-1136. https://doi.org/10.1021/np50076a039
  25. Adamczeski, M.; Reed, A. R.; Crews, P. J. Nat. Prod. 1995, 58, 201-208. https://doi.org/10.1021/np50116a007
  26. Rodriguez, A. D.; Cobar, O. M.; Padilla, O. L.; Barnes, C. L. J. Nat. Prod. 1997, 60, 1331-1333. https://doi.org/10.1021/np970328e
  27. Rodriguez, A. D.; Cobar, O. M.; Padilla, O. L. J. Nat. Prod. 1997, 60, 915-917. https://doi.org/10.1021/np970215v
  28. McCloud, T. G. Molecules 2010, 15, 4526-4563. https://doi.org/10.3390/molecules15074526