References
- H. Hong, J. U. Kim, and T. I. Kim, "Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite", Polymers, 9, 413 (2017). https://doi.org/10.3390/polym9090413
- Y. C. Kim, H. S. Min, J. S. Yu, S. Y. Hong, M. Wang, S. H. Kim, J. H. Suhr, Y. K. Lee, K. J. Kim, and J. D. Nam, "Forced infiltration of silica beads into densely packed glass fibre beds for thin composite laminates", RSC. Adv., 6, 91341 (2016). https://doi.org/10.1039/C6RA14969C
- X. G. Huang, T. Iizuka, P. K. Jiang, Y. Ohki, and T. Tanaka, "Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites", J. Phys. Chem. C, 116, 13629 (2012). https://doi.org/10.1021/jp3026545
- E. M. Alawadhi and C. H. Amon, "Performance analysis of an enhanced PCM thermal control unit", ITHERM, 10, 1109 (2000).
- S. F. Hosseinizadeh, F. I. Tan, and S. M. Moosania, "Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins", Applied Thermal Engineering, 31, 3827 (2011). https://doi.org/10.1016/j.applthermaleng.2011.07.031
- B. Agostini, M. Fabbri, J. E. Park, L. Wojtan, J. R. Thome, and B. Michel, "State of the Art of High Heat Flux Cooling Technologies", Heat Transfer Engineering, 28, 258 (2007). https://doi.org/10.1080/01457630601117799
- D. Kumlutas, H. Ismail, and M. Tavman, "Thermal Conductivity of Particle Filled Polyethylene Composite Materials", Composites Science and Technology, 63, 113 (2003). https://doi.org/10.1016/S0266-3538(02)00194-X
- R. J. Samuels and N. E. Mathis, "Orientation Specific Thermal Properties of Polyimide Film", J. Electron. Packag, 123, 273 (2001). https://doi.org/10.1115/1.1347986
- S. H. Xie, B. K. Zhu, J. B. Li, X. Z. Wei, and Z. K. Xu, "Preparation and properties of polyimied/aluminum nitride composites", Polymer Testing, 23, 797 (2004). https://doi.org/10.1016/j.polymertesting.2004.03.005
- J. W. Kim, D. H. Lee, H. J. Jeon, S. I. Jang, H. M. Cho, and Y. M. Kim, "Recyclable thermosetting thermal pad using silicone-based polyurethane crosslinked by Diels-Alder adduct", Applied Surface Science, 429, 128 (2018). https://doi.org/10.1016/j.apsusc.2017.09.003
- R. Schneider, S. R. Luthi, K. Albrecht, M. Brulisauer, A. Bernard, and T. Geiger, "Transparent Silicone Calcium Fluoride Nanocomposite with Improved Thermal Conductivity", Macromol. Mater. Eng., 300, 80 (2015). https://doi.org/10.1002/mame.201400172
- N. Balachander, I. Seshadri, R. J. Mehta, L. S. Schadler, T. B. Tasciuc, P. Keblinski, and G. Ramanath, "Nanowire-filled polymer composites with ultrahigh thermal conductivity", Appl. Phys. Lett., 102, 93 (2013).
- J. E. Mark, B. Erman, and M. Roland, The Science and Technology of Rubber, Academic press (2013).
- Y. P. Mamunya, V. Davydenko, P. Pissis, and E. Lebedev, "Electrical and thermal conductivity of polymer filled with metal powders", European Polymer Journal, 38, 1887 (2002). https://doi.org/10.1016/S0014-3057(02)00064-2
- V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, A. Henry, and B. A. Cola, "High thermal conductivity of chain-oriented amorphous polythiophene", Nature Nanotechnology, 9, 384 (2014). https://doi.org/10.1038/nnano.2014.44
-
N. T. Selvan, S. B. Eshwaran, A. Das, K. W. Stockelhuber, S. Wie
$\ss$ ner, P. Potschke, G. B. Nando, A. I. Chevanyov, and G. Heinrich, "Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications", Sensors and Actuators A, 239, 102 (2016). https://doi.org/10.1016/j.sna.2016.01.004 - J. R. Riba, N. Gonzalez, T. Canals, and R. Cantero, "Identification of natural rubber samples for high-voltage insulation applications", Computers and Chemical Engineering, 124, 197 (2019). https://doi.org/10.1016/j.compchemeng.2019.01.016
- R. H. Sun, H. Yao, H. B. Zhang, Y. Li, Y. W. Mai, and Z. Z. Yu, "Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites", Composites Science and Technology, 137, 16 (2016). https://doi.org/10.1016/j.compscitech.2016.10.017
- T. Kusunose, T. Yagi, S. H. Firoz, and T. Sekinod, "Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity", J. Mater. Chem. A, 1, 3440 (2013). https://doi.org/10.1039/c3ta00686g
- J. W. Gu, Q. Y. Zhang, J. Dang, J. P. Zhang, and Z. Y. Yang, "Thermal Conductivity and Mechanical Properties of Aluminum Nitride Filled Linear Low-Density Polyethylene Composites", Polym. Eng. Sci., 49, 1030 (2009). https://doi.org/10.1002/pen.21336
- S. Yu, P. Hing, and X. Hu, "Thermal conductivity of polystyrene-aluminum nitride composite", Composites. Part A, 33, 289 (2002). https://doi.org/10.1016/S1359-835X(01)00107-5
- W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, "Thermal conductivity of boron nitride reinforced polyethylene composites", Materials Research Bulletin, 42, 1863 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047
- K. H. Kim, M. J. Kim, Y. S. Hwang, and J. H. Kim, "Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity", Ceramics International, 40, 2047 (2014). https://doi.org/10.1016/j.ceramint.2013.07.117
- J. P. Hong, S. W. Yoon, T. S. Hwang, Y. K. Lee, S. H. Won, and J. D. Nam, "Interphase control of boron nitride/epoxy composites for high thermal conductivity", Korea-Australia Rheology Journal, 22, 259 (2010).
- C. C. Teng, C. C. M. Ma, C. H. Lu, S. Y. Yang, S. H. Lee, M. C. Hsiao, M. Y. Yen, K. C. Chiou, and T. M. Lee, "Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites", Carbon, 49, 5107 (2011). https://doi.org/10.1016/j.carbon.2011.06.095
- C. Du, M. Li, M. Cao, S. Feng, H. Guo, and B. Li, "Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube", Carbon, 126, 197 (2018). https://doi.org/10.1016/j.carbon.2017.10.027
- H. Fang, S. L. Bai, and C. P. Wong, ""White graphene"-hexagonal boron nitride based polymeric composites and their application in thermal management", Composites Communications, 2, 19 (2016). https://doi.org/10.1016/j.coco.2016.10.002
- W. Y. Zhou, S. H. Qi, H. Z. Zhao, and N. L. Liu, "Thermally Conductive Silicone Rubber Reinforced With Boron Nitride Particle", Polym. Compos., 28, 23 (2007). https://doi.org/10.1002/pc.20296
- J. P. Hong, S. W. Yoon, T. S. Hwang, J. S. Oh, S. C. Hong, Y. K. Lee, and J. D. Nam, "High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers", Thermochimica Acta, 537, 70 (2012). https://doi.org/10.1016/j.tca.2012.03.002
- B. L. Zhu, J. Ma, J. Wu, K. C. Yung, and C. S. Xie, "Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles", J. Appl. Polym. Sci., 118, 2754 (2010). https://doi.org/10.1002/app.32673
- Z. L. Li, D. D. Ju, L. J. Han, and L. S. Dong, "Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly(3-hydroxylbutyrate)", Thermochimica Acta, 657, 9 (2017).
- A. V. Herk, Chemisty and Technology of Emulsion Polymerisation, Blackwell Publishing (2005).
- J. C. Gonzalez, J. L. Valentin, M. Arroyo, K. Saalwachter, and M. A. L. Manchado, "Natrual rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and local chain order of rubber network", European Polymer Journal, 44, 3493 (2008). https://doi.org/10.1016/j.eurpolymj.2008.08.046
- Y. Akagi, T. Katashima, Y. Katsumoto, K. Fujin, T. Matsunaga, U. Chung, M. Shibayama, and T. Sakai, "Examination of the Theories of Rubber Elasticity Using an Ideal Polymer Network", Macromolecules, 44, 5817 (2011). https://doi.org/10.1021/ma201088r
- W. S. Kim, H. J. Paik, J. W. Bae, and W. H. Kim, "Effect of polyethylene glycol on the properties of styrene-butadiene rubber/organoclay nanocomposites filled with silica and carbon black", J. Appl. Polym. Sci., 122, 1766 (2011). https://doi.org/10.1002/app.34120
- L. Wang, W. Fu, W. Peng, H. Xiao, S. Li, J. Huang, and C. Liu, "Enhancing Mechanical and Thermal Properties of polyurethane Rubber Reinforced with Polyethylene Glycol-g-Graphene Oxide", Advances in Polymer Technology, 3, 1 (2019).
- T. Qi, Y. Li, Y. Cheng, and F. Xiao, "Surface treatments of hexagonal boron nitride for thermal conductive epoxy composites", IEEE, 405 (2014).
- M. Z. Rong, M. Q. Zhang, and W. H. Ruan, "Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review", Materials Science and Technology, 22, 787 (2006). https://doi.org/10.1179/174328406X101247
- W. Peng, X. Huang, J. Yu, P. Jiang, and W. Liu, "Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification", Composites Part A, 41, 1201 (2010). https://doi.org/10.1016/j.compositesa.2010.05.002
- J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang, and X. Qu, "Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity", RSC. Adv., 4, 44282 (2014). https://doi.org/10.1039/C4RA07394K
- F.P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer, John Wiley & Sons United States of America (2013).
- D. Shen, Z. Zhan, Z. Liu, Y. Cao, L. Zhou, Y. Liu, W. Dei, K. Nishimura, C. Li, C. T. Lin, N. Jiang, and J. Yu, "Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires", Scientific Reports, 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
- A. Zanchet, P. S. Garcia, R. C. R. Nunes, J. S. Crespo, and C. H. Scuracchio, "Sustainable Natural Rubber Compounds: Naphthenic Oil Exchange for another Alternative from Renewable Source", Int. Ref. J. Eng. Sci., 4, 10 (2016).
- Y. Kou, S. Wang, J. Luo, K. Sun, J. Zhang, Z. Tan, and Q. Shi, "Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications", The Journal of Chemical Thermodynamics, 128, 259 (2019). https://doi.org/10.1016/j.jct.2018.08.031