과제정보
This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (PJ01181502)".
참고문헌
- Barbon AP, Barbon Jr S, Campos GF, Seixas Jr JL, Peres LM, Mastelini SM, Andreo N, Ulrici A, Bridi AM. 2017. Development of a flexible computer vision system for marbling classification. Computers and Electronics in Agriculture 142:536-544. https://doi.org/10.1016/j.compag.2017.11.017
- Barbon DF, Sun DW, Su C. 2013. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen-thawed porcine longissimus dorsi muscles. Innovative Food Science & Emerging Technologies 18:226-236. https://doi.org/10.1016/j.ifset.2012.12.011
- Dyrmann M, Karstoft H, Midtiby HS. 2016. Plant species classification using deep convolutional neural network. Biosystems Engineering 151:72-80. https://doi.org/10.1016/j.biosystemseng.2016.08.024
- Farrow RL, Loneragan GH, Pauli JW, Lawrence TE. 2009. An exploratory observational study to develop an improved method for quantifying beef carcass salable meat yield. Meat Science 82:143-150. https://doi.org/10.1016/j.meatsci.2008.12.014
- Glorot X, Bordes A, Bengio Y. 2011. Deep sparse rectifier neural networks. pp. 315-323. In Proceedings of the fourteenth international conference on artificial intelligence and statistics.
- Gotoh T, Joo ST. 2016. Characteristics and health benefit of highly marbled Wagyu and Hanwoo beef. Korean Journal Food Science of Animal Resources 36:709-718. https://doi.org/10.5851/kosfa.2016.36.6.709
- Greiner SP, Rouse GH, Wilson DE, Cundiff LV, Wheeler TL. 2003. Prediction of retail product weight and percentage using ultrasound and carcass measurements in beef cattle. Journal of Animal Science 81:1736-1742. https://doi.org/10.2527/2003.8171736x
- Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
- Kang TH, Cho SK, Seo J, Kim M, Kim BW. 2019. Contribution analysis of carcass traits and seasonal effect on auction price for Hanwoo steers. Korean Journal of Agricultural Science 46:461-469. [in Korean] https://doi.org/10.7744/KJOAS.20190030
- Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. pp. 1097-1105. In Advances in Neural Information Processing Systems.
- Kvam J, Kongsro J. 2017. In vivo prediction of intramuscular fat using ultrasound and deep learning. Computers and Electronics in Agriculture 142:521-523. https://doi.org/10.1016/j.compag.2017.11.020
- Kwon KD, Seo Y, Kim GY, Yoo HC, Lee WH, Cho BK. 2019. Feasibility study of convolutional neural network for beef quality grade. p. 156. In Proceedings of the 2019 Spring Conference of Korean Society for Food Engineering.
- LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436-444. https://doi.org/10.1038/nature14539
- Lee HJ, Choe J, Kim KT, Oh J, Lee DG, Kwon KM, Choi YI, Jo C. 2017. Analysis of low-marbled Hanwoo cow meat aged with different dry-aging methods. Asian-Australasian Journal of Animal Sciences 30:1733. https://doi.org/10.5713/ajas.17.0318
- Lee SH, Park BH, Sharma A, Dang CG, Lee SS, Choi TJ, Choy YH, Kim HC, Jeon KJ, Kim SD, Yeon SH. 2014. Hanwoo cattle: Origin, domestication, breeding strategies and genomic selection. Journal of Animal Science and Technology 56:2. https://doi.org/10.1186/2055-0391-56-2
- Lin J, Sha D, Su D, Shen T. 2005. Distortion measurement of CCD imaging system with short focal length and largefield objective. Optics and Lasers in Engineering 43:1137-1144. https://doi.org/10.1016/j.optlaseng.2004.07.006
- Ma J, Pu H, Sun DW, Gao W, Qu JH, Ma KY. 2015. Application of Vis-NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus dorsi muscles. International Journal of refrigeration 50:10-18. https://doi.org/10.1016/j.ijrefrig.2014.10.024
- Mohanty SP, Hughes DP, Salathe M. 2016. Using deep learning for image-based plant disease detection. Frontiers in Plant Science 7:1419. https://doi.org/10.3389/fpls.2016.01419
- Niu XX, Suen CY. 2012. A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognition 45:1318-1325. https://doi.org/10.1016/j.patcog.2011.09.021
- Park J, Byun SC, Lee BU. 2009. Lens distortion correction using ideal image coordinates. IEEE Transactions on Consumer Electronics 55:987-991. https://doi.org/10.1109/TCE.2009.5278053
- Platter WJ, Tatum JD, Belk KE, Koontz SR, Chapman PL, Smith GC. 2005. Effects of marbling and shear force on consumers' willingness to pay for beef strip loin steaks. Journal of Animal Science 83:890-899. https://doi.org/10.2527/2005.834890x
- Pu H, Sun DW, Ma J, Cheng JH. 2015. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis. Meat Science 99:81-88. https://doi.org/10.1016/j.meatsci.2014.09.001
- Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC. 2015. Imagenet large scale visual recognition challenge. International Journal of Computer Vision 115:211-252. https://doi.org/10.1007/s11263-015-0816-y
- Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15:1929-1958.
- Sun X, Young J, Liu JH, Newman D. 2018. Prediction of pork loin quality using online computer vision system and artificial intelligence model. Meat Science 140:72-77. https://doi.org/10.1016/j.meatsci.2018.03.005
- Weng J, Cohen P, Herniou M. 1992. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14:965-980. https://doi.org/10.1109/34.159901
- Wu X, Song X, Qiu Z, He Y. 2016. Mapping of TBARS distribution in frozen-thawed port using NIR hyperspectral imaging. Meat Science 113:92-96. https://doi.org/10.1016/j.meatsci.2015.11.008
- Xie A, Sun DW, Xu Z, Zhu Z. 2015. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta 139:208-215. https://doi.org/10.1016/j.talanta.2015.02.027
- Yanai K, Kawano Y. 2015. Food image recognition using deep convolutional network with pre-training and fine-tuning. pp. 1-6. In 2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).
- Zhang Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22:1330-1334. https://doi.org/10.1109/34.888718