References
- Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization, The Journal of Machine Learning Research, 13(1), pp. 281-305.
- Choi, Y., Yim, H., & Park, B. (2009). Analysis on the Lotting Price Fluctuation of the Multi-Family Attached House According to the Construction Material Cost Variation, Journal of The Korean Society of Civil Engineers, 29(6D), pp. 753-760.
- Choi, M., & Kwon, O. (2008). Construction material cost increase and countermeasures, Construction trend briefing by Korea Institute of Construction Industry, Vol. 2008 No.6, pp. 2-34.
- Chung, W., Park, G., Gu, Y., Kim, S., & Yoo, S. (2019). City Gas Pipeline Pressure Prediction Model, Journal of Society for e-Business Studies, 23(2), pp. 33-47. https://doi.org/10.7838/JSEBS.2018.23.2.033
- Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions, European Journal of Operational Research, 270(2), pp. 654-669. https://doi.org/10.1016/j.ejor.2017.11.054
- Gao, X., Shi, M., Song, X., Zhang, C., & Zhang, H. (2019). Recurrent neural networks for real-time prediction of TBM operating parameters, Automation in Construction, 98, pp. 225-235. https://doi.org/10.1016/j.autcon.2018.11.013
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory, Neural computation, 9(8), pp. 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Joo, I., & Choi, S. (2018). Stock prediction model based on bidirectional LSTM recurrent neural network, The Journal of Korea Institute of Information, Electronics, and Communication Technology, 11(2), pp. 204-208. https://doi.org/10.17661/JKIIECT.2018.11.2.204
- Kim, J., & Baek, C. (2019) Bivariate long range dependent time series forecasting using deep learning, The Korean Journal of Applied Statistics, 32(1), pp. 69-81. https://doi.org/10.5351/KJAS.2019.32.1.069
- Lahari, M. C., Ravi, D. H., & Bharathi, R. (2018). Fuel Price Prediction Using RNN, 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1510-1514. IEEE.
- Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio, Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation, In Proceedings of the 24th international conference on Machine learning, pp. 473-480.
- Lee, D., & Kim, K. (2019). Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information, Journal of Society for e-Business Studies, 24(1), pp. 1-16.
- Lee, J., & Choi, J. (2007). Analysis of the impact of material procurement and procurement management on the process: Focusing on the steel structure project, Journal of the Architectural Institute of Korea-Structural Section, 23.12, pp. 141-148.
- Lee, J., Yoo, J., Kim., C., Lee, G., & Lim, B. (2008). The method of calculating the order point considering the fluctuations in demand for materials at construction sites. Journal of the Architectural Institute of Korea-Structural System, 24(10), pp. 117-125.
- Lee, S., Kim, S., Lee, J., & Han, C. (2006). Proposal for Developed Procurement and Material management System On Using Previous System Analysis in Plant Engineering, Korean Society for Construction Management Conference, pp. 204-209.
- Lee, W., Kim, Y., Kim, J., & Lee, C. (2020). Forecasting of Iron Ore Prices using Machine Learning, Journal of the Korea Industrial Information Systems Research, 25(2), pp. 57-72. https://doi.org/10.9723/JKSIIS.2020.25.2.057
- Liao, T. W. (2005). Clustering of time series data-a survey, Pattern recognition, 38(11), pp. 1857-1874. https://doi.org/10.1016/j.patcog.2005.01.025
- Liu, H., Mi, X., & Li, Y. (2018). Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network, Energy Conversion and Management, 166, pp. 120-131. https://doi.org/10.1016/j.enconman.2018.04.021
- Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2014). Traffic flow prediction with big data: a deep learning approach, IEEE Transactions on Intelligent Transportation Systems, 16(2), pp. 865-873. https://doi.org/10.1109/TITS.2014.2345663
- Olson, D. L., & Delen, D. (2008). Advanced data mining techniques, Springer-Verlag, Berlin Heidelberg.
- Park, S., & Jung, D.(2016). Basic Study on the Material Market by Specialized Construction Industry, Seoul: Korea Institute of Construction Policy and Management.
- Polson, N.G., & Sokolov, V.O. (2017). Deep learning for short-term traffic flow prediction, Transportation Research Part C: Emerging Technologies, 79, pp. 1-17. https://doi.org/10.1016/j.trc.2017.02.024
- Schuster, M., & Paliwal, K.K. (1997). Bidirectional recurrent neural networks, IEEE Trans Signal Process, 45, pp. 2673-2681. https://doi.org/10.1109/78.650093
- Seo, Y, & Yeom, J. (2019). Comparison of LSTM-based Fine Dust Concentration Prediction Method using Meteorology Data, Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography 2019, pp. 117-120.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting, The journal of machine learning research, 15(1), pp. 1929-1958.
- Tensorflow.org. (2020) Overfitting and underfitting, accessed Sep 27, 2020, https://www.tensorflow.org/tutorials/keras/overfit_and_underfit.stand