Acknowledgement
이 논문은 2020학년도 홍익대학교 학술연구진흥비와 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입 (No. NRF-2015R1D1A1A01058577).
References
- Abravesh, M., Bueno, B., Heidari, S., & Kuhn, T. E. (2019). A method to evaluate glare risk from operable fenestration systems throughout a year. Building and Environment, 160, 106213. https://doi.org/10.1016/j.buildenv.2019.106213
- Acosta, I., Campano, M. A., Leslie, R., & Radetsky, L. (2019). Daylighting design for healthy environments: Analysis of educational spaces for optimal circadian stimulus. Solar Energy, 193, 584-596. https://doi.org/10.1016/j.solener.2019.10.004
- Acosta, I., Leslie, R. P., & Figueiro, M. G. (2017). Analysis of circadian stimulus allowed by daylighting in hospital rooms. Lighting Research & Technology, 49(1), 49-61. https://doi.org/10.1177/1477153515592948
- Acosta, I., Molina, J. F., & Campano, M. A. (2017). Analysis of circadian stimulus and visual comfort provided by window design in architecture. International Journal of Engineering and Technology, 9(3), 198. https://doi.org/10.7763/IJET.2017.V9.970
- Amundadottir, M. L., Lockley, S. W., & Andersen, M. (2013). Simulation-based evaluation of non-visual responses to daylight: proof-of-concept study of healthcare re-design. In BS 2013: 13th International Conference of the International Building Performance Simulation Association (No. CONF).
- Amundadottir, M. L., Rockcastle, S., Khanie, M. S., & Andersen, M. (2017). A human-centric approach to assess daylight in buildings for non-visual health potential, visual interest and gaze behavior. Building and Environment, 113, 5-21. https://doi.org/10.1016/j.buildenv.2016.09.033
- Andersen, M., Gochenour, S. J., & Lockley, S. W. (2013). Modelling 'non-visual' effects of daylighting in a residential environment. Building and Environment, 70, 138-149. https://doi.org/10.1016/j.buildenv.2013.08.018
- Bellia, L., Pedace, A., & Barbato, G. (2013). Lighting in educational environments: An example of a complete analysis of the effects of daylight and electric light on occupants. Building and Environment, 68, 50-65. https://doi.org/10.1016/j.buildenv.2013.04.005
- Bellia, L., Pedace, A., & Barbato, G. (2014). Daylighting offices: A first step toward an analysis of photobiological effects for design practice purposes. Building and Environment, 74, 54-64. https://doi.org/10.1016/j.buildenv.2013.12.021
- Bellia, L., Fragliasso, F., & Stefanizzi, E. (2017). Daylit offices: A comparison between measured parameters assessing light quality and users' opinions. Building and Environment, 113, 92-106. https://doi.org/10.1016/j.buildenv.2016.08.014
- Bian, Y., & Ma, Y. (2018). Subjective survey & simulation analysis of time-based visual comfort in daylit spaces. Building and Environment, 131, 63-73. https://doi.org/10.1016/j.buildenv.2018.01.007
- Bian, Y., Leng, T., & Ma, Y. (2018). A proposed discomfort glare evaluation method based on the concept of 'adaptive zone'. Building and Environment, 143, 306-317. https://doi.org/10.1016/j.buildenv.2018.07.025
- Boyce, P. R. (2014). Human factors in lighting. Crc Press.
- Borisuit, A. (2013). The impact of light including non-image forming effects on visual comfort (No. THESIS). EPFL.
- Borisuit, A., Linhart, F., Scartezzini, J. L., & Munch, M. (2015). Effects of realistic office daylighting and electric lighting conditions on visual comfort, alertness and mood. Lighting Research & Technology, 47(2), 192-209. https://doi.org/10.1177/1477153514531518
- Brennan, M. T., & Collins, A. R. (2018, September). Outcome-Based Design for Circadian Lighting: An Integrated Approach to Simulation & Metrics. In 2018 Building Performance Analysis Conference and SimBuild (pp. 141-148).
- BS EN 12665. (2011). Light and lighting. Basic Terms and Criteria for Specifying Lighting Requirements.
- Cai, W., Yue, J., Dai, Q., Hao, L., Lin, Y., Shi, W., ... & Wei, M. (2018). The impact of room surface reflectance on corneal illuminance and rule-of-thumb equations for circadian lighting design. Building and Environment, 141, 288-297. https://doi.org/10.1016/j.buildenv.2018.05.056
- Chen, X., Zhang, X., & Du, J. (2019). Glazing type (colour and transmittance), daylighting, and human performances at a workspace: A full-scale experiment in Beijing. Building and Environment, 153, 168-185. https://doi.org/10.1016/j.buildenv.2019.02.034
- Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Rimmer, D. W., ... & Dijk, D. J. (1999). Stability, precision, and near-24-hour period of the human circadian pacemaker. Science, 284(5423), 2177-2181. https://doi.org/10.1126/science.284.5423.2177
- Davoodi, A., Johansson, P., & Aries, M. (2020, February). The use of lighting simulation in the evidence-based design process: A case study approach using visual comfort analysis in offices. In Building Simulation (Vol. 13, No. 1, pp. 141-153). Tsinghua University Press. https://doi.org/10.1007/s12273-019-0578-5
- Day, J. K., Futrell, B., Cox, R., Ruiz, S. N., Amirazar, A., Zarrabi, A. H., & Azarbayjani, M. (2019). Blinded by the light: Occupant perceptions and visual comfort assessments of three dynamic daylight control systems and shading strategies. Building and Environment, 154, 107-121. https://doi.org/10.1016/j.buildenv.2019.02.037
- Hamedani, Z., Solgi, E., Hine, T., Skates, H., Isoardi, G., & Fernando, R. (2020). Lighting for work: A study of the relationships among discomfort glare, physiological responses and visual performance. Building and Environment, 167, 106478. https://doi.org/10.1016/j.buildenv.2019.106478
- Heerwagen, J. U. D. I. T. H., & Zagreus, L. (2005). The human factors of sustainable building design: post occupancy evaluation of the Philip Merrill Environmental Center.
- Hobday, R. (2016). Myopia and daylight in schools: a neglected aspect of public health?. Perspectives in public health, 136(1), 50-55. https://doi.org/10.1177/1757913915576679
- Jakubiec, J. A., & Reinhart, C. F. (2016). A concept for predicting occupants' long-term visual comfort within daylit spaces. Leukos, 12(4), 185-202. https://doi.org/10.1080/15502724.2015.1090880
- Kaya, S. M., & Afacan, Y. (2018). Effects of daylight design features on visitors' satisfaction of museums. Indoor and Built Environment, 27(10), 1341-1356. https://doi.org/10.1177/1420326x17704028
- Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., ... & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3), 231-252. https://doi.org/10.1038/sj.jea.7500165
- Khademagha, P., Aries, M. B. C., Rosemann, A. L. P., & Van Loenen, E. J. (2016). Implementing non-image-forming effects of light in the built environment: A review on what we need. Building and Environment, 108, 263-272. https://doi.org/10.1016/j.buildenv.2016.08.035
- Knoop, M., Stefani, O., Bueno, B., Matusiak, B., Hobday, R., Wirz-Justice, A., ... & Appelt, S. (2020). Daylight: What makes the difference?. Lighting Research & Technology, 52(3), 423-442. https://doi.org/10.1177/1477153519869758
- Konis, K. (2013). Evaluating daylighting effectiveness and occupant visual comfort in a side-lit open-plan office building in San Francisco, California. Building and Environment, 59, 662-677. https://doi.org/10.1016/j.buildenv.2012.09.017
- Konis, K. (2017). A novel circadian daylight metric for building design and evaluation. Building and Environment, 113, 22-38. https://doi.org/10.1016/j.buildenv.2016.11.025
- Konis, K. (2018). Field evaluation of the circadian stimulus potential of daylit and non-daylit spaces in dementia care facilities. Building and Environment, 135, 112-123. https://doi.org/10.1016/j.buildenv.2018.03.007
- Konis, K. (2019). A circadian design assist tool to evaluate daylight access in buildings for human biological lighting needs. Solar Energy, 191, 449-458. https://doi.org/10.1016/j.solener.2019.09.020
- Konstantzos, I., Tzempelikos, A., & Chan, Y. C. (2015). Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades. Building and Environment, 87, 244-254. https://doi.org/10.1016/j.buildenv.2015.02.007
- Konstantzos, I., & Tzempelikos, A. (2017). Daylight glare evaluation with the sun in the field of view through window shades. Building and Environment, 113, 65-77. https://doi.org/10.1016/j.buildenv.2016.09.009
- Korsavi, S. S., Zomorodian, Z. S., & Tahsildoost, M. (2016). Visual comfort assessment of daylit and sunlit areas: A longitudinal field survey in classrooms in Kashan, Iran. Energy and Buildings, 128, 305-318. https://doi.org/10.1016/j.enbuild.2016.06.091
- Lavie, P. (2001). Sleep-wake as a biological rhythm. Annual review of psychology, 52(1), 277-303. https://doi.org/10.1146/annurev.psych.52.1.277
- Lee, D. (2012). Lighting design handbook 1, ECOFEEL, 8.
- Lee, K. (2016). Architectural environmental science. 3rd ed, Munundang, 245.
- Leslie, R. P., Radetsky, L. C., & Smith, A. M. (2012). Conceptual design metrics for daylighting. Lighting Research & Technology, 44(3), 277-290. https://doi.org/10.1177/1477153511423076
- Lim, Y. W., Kandar, M. Z., Ahmad, M. H., Ossen, D. R., & Abdullah, A. M. (2012). Building facade design for daylighting quality in typical government office building. Building and Environment, 57, 194-204. https://doi.org/10.1016/j.buildenv.2012.04.015
- Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., ... & Price, L. L. (2014). Measuring and using light in the melanopsin age. Trends in neurosciences, 37(1), 1-9. https://doi.org/10.1016/j.tins.2013.10.004
- Mardaljevic, J., Andersen, M., Roy, N., & Christoffersen, J. (2014). A framework for predicting the non-visual effects of daylight-Part II: The simulation model. Lighting Research & Technology, 46(4), 388-406. https://doi.org/10.1177/1477153513491873
- Michael, A., & Heracleous, C. (2017). Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus. Energy and Buildings, 140, 443-457. https://doi.org/10.1016/j.enbuild.2016.12.087
- Moazzeni, M. H., & Ghiabaklou, Z. (2016). Investigating the influence of light shelf geometry parameters on daylight performance and visual comfort, a case study of educational space in Tehran, Iran. Buildings, 6(3), 26. https://doi.org/10.3390/buildings6030026
- Munch, M., Brondsted, A. E., Brown, S. A., Gjedde, A., Kantermann, T., Martiny, K., ... & Wirz-Justice, A. (2017). The effect of light on humans. Changing perspectives on daylight: Science, technology, and culture, 16-23.
- Othman, A. R., & Mazli, M. A. M. (2012). Influences of Daylighting towards Readers' Satisfaction at Raja Tun Uda Public Library, Shah Alam. Procedia-Social and Behavioral Sciences, 68, 244-257. https://doi.org/10.1016/j.sbspro.2012.12.224
- Park, H. (2019). Circadian Lighting, The Proceedings of the Korean Institute of Illumination and Electrical Installation Engineers, 33(6), 25-28
- Pechacek, C. S., Andersen, M., & Lockley, S. W. (2008). Preliminary method for prospective analysis of the circadian efficacy of (day) light with applications to healthcare architecture. Leukos, 5(1), 1-26. https://doi.org/10.1080/15502724.2008.10747625
- Potocnik, J., & Kosir, M. (2020). Influence of commercial glazing and wall colours on the resulting non-visual daylight conditions of an office. Building and Environment, 171, 106627. https://doi.org/10.1016/j.buildenv.2019.106627
- Rea, M. S., Figueiro, M. G., Bierman, A., & Hamner, R. (2012). Modelling the spectral sensitivity of the human circadian system. Lighting Research & Technology, 44(4), 386-396. https://doi.org/10.1177/1477153511430474
- Reinhart, C., & Breton, P. F. (2009). Experimental validation of Autodesk® 3ds Max® Design 2009 and DAYSIM 3.0. Leukos, 6(1), 7-35. https://doi.org/10.1582/LEUKOS.2009.06.01001
- Solt, J., Aarts, M. P. J., Andersen, M., Appelt, S., Bodart, M., Kaempf, J., ... & Schuler, A. (2017). Daylight in the built environment. In Changing perspectives on daylight: science, technology, and culture (pp. 24-32). Science/AAAS.
- Stevens, R. G., Blask, D. E., Brainard, G. C., Hansen, J., Lockley, S. W., Provencio, I., ... & Reinlib, L. (2007). Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environmental health perspectives, 115(9), 1357-1362. https://doi.org/10.1289/ehp.10200
- Suk, J. Y. (2019). Luminance and vertical eye illuminance thresholds for occupants' visual comfort in daylit office environments. Building and Environment, 148, 107-115. https://doi.org/10.1016/j.buildenv.2018.10.058
- Tabadkani, A., Shoubi, M. V., Soflaei, F., & Banihashemi, S. (2019). Integrated parametric design of adaptive facades for user's visual comfort. Automation in Construction, 106, 102857. https://doi.org/10.1016/j.autcon.2019.102857
- Veitch, J. A., Van den Beld, G., Brainard, G., & Roberts, J. E. (2004). Ocular lighting effects on human physiology, mood and behaviour (No. 158). Tech. Report of CIE.
- Yao, J. (2020). IDENTIFYING OCCUPANTS'APPROPRIATE SEATING POSITION AND VIEW DIRECTION IN OFFICE BUILDINGS: A STOCHASTIC SHADE CONTROL BASED MULTIOBJECTIVE VISUAL COMFORT OPTIMIZATION. Journal of Green Building, 15(1), 15-36. https://doi.org/10.3992/1943-4618.15.1.15
- Yao, Q., Cai, W., Li, M., Hu, Z., Xue, P., & Dai, Q. (2020). Efficient circadian daylighting: A proposed equation, experimental validation, and the consequent importance of room surface reflectance. Energy and Buildings, 210, 109784. https://doi.org/10.1016/j.enbuild.2020.109784
- Yun, G., Sho, D. W., & Kim, K. S. (2011). A study on visual environment evaluation of residential space using the radiance program. Journal of the Architectural Institute of Korea Planning & Design, 27(2), 227-234.
- Zomorodian, Z. S., & Tahsildoost, M. (2019). Assessing the effectiveness of dynamic metrics in predicting daylight availability and visual comfort in classrooms. Renewable Energy, 134, 669-680. https://doi.org/10.1016/j.renene.2018.11.072