References
- Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008;2008:pdb.prot4986.
- Dalla Palma P, Giorgi Rossi P, Collina G, Buccoliero AM, Ghiringhello B, Gilioli E, Onnis GL, Aldovini D, Galanti G, Casadei G, Aldi M, Gomes VV, Giubilato P, Ronco G; NTCC Pathology Group. The reproducibility of CIN diagnoses among different pathologists: data from histology reviews from a multicenter randomized study. Am J Clin Pathol. 2009;132:125-132. https://doi.org/10.1309/AJCPBRK7D1YIUWFP
- Hamilton PW, van Diest PJ, Williams R, Gallagher AG. Do we see what we think we see? The complexities of morphological assessment. J Pathol. 2009;218:285-291. https://doi.org/10.1002/path.2527
- Cheng J, Mo X, Wang X, Parwani A, Feng Q, Huang K. Identification of topological features in renal tumor microenvironment associated with patient survival. Bioinformatics. 2018;34:1024-1030. https://doi.org/10.1093/bioinformatics/btx723
- Djuric U, Zadeh G, Aldape K, Diamandis P. Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precis Oncol. 2017;1:22. https://doi.org/10.1038/s41698-017-0022-1
- Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal. 2016;33:170-175. https://doi.org/10.1016/j.media.2016.06.037
- de Bruijne M. Machine learning approaches in medical image analysis: from detection to diagnosis. Med Image Anal. 2016;33:94-97. https://doi.org/10.1016/j.media.2016.06.032
- Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, Kwak TY. Artificial Intelligence in Pathology. J Pathol Transl Med. 2019;53:1-12. https://doi.org/10.4132/jptm.2018.12.16
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. https://doi.org/10.1038/nature14539
- Jang HJ, Cho KO. Applications of deep learning for the analysis of medical data. Arch Pharm Res. 2019;42:492-504. https://doi.org/10.1007/s12272-019-01162-9
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402-2410. https://doi.org/10.1001/jama.2016.17216
- Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18:570-584. https://doi.org/10.3348/kjr.2017.18.4.570
- Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform. 2016;7:29. https://doi.org/10.4103/2153-3539.186902
- Kwon JM, Kim KH, Jeon KH, Kim HM, Kim MJ, Lim SM, Song PS, Park J, Choi RK, Oh BH. Development and validation of deeplearning algorithm for electrocardiography-based heart failure identification. Korean Circ J. 2019;49:629-639. https://doi.org/10.4070/kcj.2018.0446
- Jang HJ, Cho KO. Dual deep neural network-based classifiers to detect experimental seizures. Korean J Physiol Pharmacol. 2019;23:131-139. https://doi.org/10.4196/kjpp.2019.23.2.131
- Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van Arnam J; Cancer Genome Atlas Research Network, Shmulevich I, Rao AUK, Lazar AJ, Sharma A, Thorsson V. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23:181-193.e7. https://doi.org/10.1016/j.celrep.2018.03.086
- Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. PanCancer insights from the cancer genome atlas: the pathologist's perspective. J Pathol. 2018;244:512-524. https://doi.org/10.1002/path.5028
- Senaras C, Niazi MKK, Lozanski G, Gurcan MN. DeepFocus: detection of out-of-focus regions in whole slide digital images using deep learning. PLoS One. 2018;13:e0205387. https://doi.org/10.1371/journal.pone.0205387
- Kim JH, Hong JS, Park HJ. Prospects of deep learning for medical imaging. Precis Future Med. 2018;2;37-52. https://doi.org/10.23838/pfm.2018.00030
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543-550. https://doi.org/10.1038/nature13385
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489: 519-525. https://doi.org/10.1038/nature11404
- Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. arXiv. 1901.06032 [Preprint]. 2019. Available from: https://arxiv.org/abs/1901.06032.
- Glasziou P. The statistical evaluation of medical tests for classification and prediction. Stat Med. 2005;24:2582. https://doi.org/10.1002/sim.2185
- Venkatraman ES. A permutation test to compare receiver operating characteristic curves. Biometrics. 2000;56:1134-1138. https://doi.org/10.1111/j.0006-341X.2000.01134.x
- Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Bartlett P, Pereira FCN, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012. Red Hook: Curran Associates Inc.; 2012.
- Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. arXiv. 1409.4842 [Preprint]. 2014. Available from: https://arxiv.org/abs/1409.4842.
- Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, Snyder M. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474. https://doi.org/10.1038/ncomms12474
- Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak JAWM; the CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318:2199-2210. https://doi.org/10.1001/jama.2017.14585
- Hamilton PW, Bankhead P, Wang Y, Hutchinson R, Kieran D, McArt DG, James J, Salto-Tellez M. Digital pathology and image analysis in tissue biomarker research. Methods. 2014;70:59-73. https://doi.org/10.1016/j.ymeth.2014.06.015
- Kather JN, Pearson AT, Halama N, Jager D, Krause J, Loosen SH, Marx A, Boor P, Tacke F, Neumann UP, Grabsch HI, Yoshikawa T, Brenner H, Chang-Claude J, Hoffmeister M, Trautwein C, Luedde T. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019;25:1054-1056. https://doi.org/10.1038/s41591-019-0462-y
Cited by
- Generalizability of Deep Learning System for the Pathologic Diagnosis of Various Cancers vol.11, pp.2, 2021, https://doi.org/10.3390/app11020808
- A State-of-the-Art Review for Gastric Histopathology Image Analysis Approaches and Future Development vol.2021, 2020, https://doi.org/10.1155/2021/6671417
- Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images vol.13, pp.15, 2020, https://doi.org/10.3390/cancers13153811
- Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach vol.27, pp.44, 2021, https://doi.org/10.3748/wjg.v27.i44.7687