Acknowledgement
This research was sponsored by the Norwegian Public Road Administration. This study is also part of the E39 costal ferry-free highway project. This research is supported and lead by the Norwegian University of Science and Technology in Trondheim. Acknowledged is the contribution from University of Ljubljana, Faculty of Civil and Geodetic Engineering.
References
- Aas-Jakobsen, K. and Strommen, E. (2001), "Time domain buffeting response calculation of slander structures", J. Wind Eng. Ind. Aerod., 89(5), 341-364. https://doi.org/10.1016/S0167-6105(00)00070-2.
- Bartosz, S. and Oiseth, O. (2018), "Modeling of self-excited forces during multimode flutter: an experimental study", Wind Struct., 27(5), 293-309. https://doi.org/10.12989/was.2018.27.5.293.
- Borri, C., Costa, C. and Zahlten, W. (2002), "Non-stationary flow forces for the numerical simulation of aeroelastic instability of bridge decks", Comput. Struct., 80, 1071-1079. https://doi.org/10.1016/S0045-7949(02)00066-4
- Brownjohn, J.M.W. and Choi, C.C. (2001), "Wind tunnel section model study of aeroelastic performance for Ting Kau Bridge Deck", Wind Struct., 4(5), 367-382. http://dx.doi.org/10.12989/was.2001.4.5.367.
- Bucher, C.G. and Lin, Y.K. (1988), "Stochastic stability of bridges considering coupled modes", Engineering Mechanics - ASCE, 114, 2055-2071. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2055).
- Caracoglia, L. and Jones, N.P. (2003), "Time domain vs. frequency domain characterization of aeroelastic force for bridge deck sections", J. Wind Eng. Ind. Aerod., 91, 371-402. https://doi.org/10.1016/S0167-6105(02)00399-9.
- Chen, X. and Kareem, A. (2001), "Nonlinear response analysis of long-span bridges under turbulent winds", J. Wind Eng. Ind. Aerod., 89, 1335-1350. https://doi.org/10.1016/S0167-6105(01)00147-7.
- Chen, X. and Kareem, A. (2002), "Advances in modeling of aerodynamic forces on bridge decks", J. Eng. Mec., 128(11), 1193-1205. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1193).
- Chen, X., Matsumoto, M. and Kareem, A. (2000), "Aerodynamic coupling effects on flutter and buffeting of Bridges", J. Eng. Mech., 17(2), 201-213. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(17).
- Chen, X.Z., Matsumoto, M. and Kareem, A. (2000), "Time domain flutter and buffeting response analysis of Bridges", J. Eng. Mech. - ASCE, 126, 7-16. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
- Chowdhury, A.G. and Partha P.S. (2004), "Identification of eighteen flutter derivatives of an airfoil and a bridge deck", Wind Struct., 7(3), 187-202. http://dx.doi.org/10.12989/was.2004.7.3.187.
- Cummins, W.E. (1962), "The impulse response function and ship motions ", Schiffstechnik, 9, 101-109.
- Diana, G., Resta, F. and Rocchi, D. (2008), "A new numerical approach to reproduce bridge aerodynamic non- linearities in time domain", J. Wind Eng. Ind. Aerod., 96, 1871-1884. https://doi.org/10.1016/j.jweia.2008.02.052.
- Hammersley, J. (2013), Monte carlo methods. Springer Science & Business Media.
- Helgedagsrud, A.T., Bazilevs, Y., Mathisen, M.K. and Oiseth, A.O. (2019), "ALE-VMS methods for wind-resistant design of longspan bridges", J. Wind Eng. Ind. Aerod., 191. https://doi.org/10.1016/j.jweia.2019.06.001.
- Helgedagsrud, A.T., Bazilevs, Y., Mathisen, M.K. and Oiseth, A.O. (2019), "Computational and experimental investigation of free vibration and flutter of bridge decks", Comput. Mech., 63, 121-136. http://dx.doi.org/10.1007/s00466-018-1587-4.
- Helgedagsrud, T.A., Akkerman, I., Bazilevs, Y., Mathisen, M.K. and Oiseth, A.O. (2019), "Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics", Eng. Mech., 5, 145. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001601.
- Helgedagsrud, T.A., Bazilevs, Y., Korobenko, A., Mathisen, K.M. and Oiseth, A.O. (2018), "Using ALE-VMS to compute aerodynamic derivatives of bridge sections", Comput. Fluids, 1, 1-13. https://doi.org/10.1016/j.compfluid.2018.04.037.
- Holmes, J. (2007), Wind Loading on Structures, Taylor&Francis.
- Kavrakov, I. and Morgenthal, G. (2017), "A Comparative assessment of aerodynamic models for buffeting and flutter of long-span bridges", Engineering, 3, 823-838 https://doi.org/10.1016/j.eng.2017.11.008.
- Kavrakov, I., Legatiuk, D., Gürlebeck, K. and Morgenthal, G. (2019), "A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks", Royal Soc. Open Sci., 6, 181848. https://doi.org/10.1098/rsos.181848.
- King, F.W. (2009), "Hilbert Transforms", Encyclopedia Mathem. Appl., Cambridge, 124.
- Krenk, S. (1996), "Wind field coherence and dynamic wind forces", IUTAM Symposium on 533 Advances in Nonlinear Stochastic Mechanics: Proceedings of the IUTAM Symposium held in Trondheim, 269-278. https://doi.org/10.1007/978-94-009-0321-0_25.
- Masaru, M. (1996), "Aerodynamic damping of prism", J. Wind Eng. Ind. Aerod., 59, 159-175. https://doi.org/10.1016/0167-6105(96)00005-0.
- Metropolis, N. and Ulam, S. (1949), "The Monte Carlo Method", J. Amer. Statistic. Assoc., 44(247), 335-341. https://doi.org/10.1080/01621459.1949.10483310
- Mishra, S.S., Kumar, K. and Krishna, P. (2008), "Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives", Wind Eng. Ind. Aerod., 96, 83-102. https://doi.org/10.1016/j.jweia.2007.03.006.
- Oiseth, O., Ronnquist, A. and Sigbjornsson, R. (2010), "Simplified prediction of wind-induced response and stability limit of slender long-spansuspension bridges, based on modified quasi-steady theory: A case study", J. Wind Eng. Ind. Aerod., 98, 730-741. https://doi.org/10.1016/j.jweia.2010.06.009.
- Oiseth, O., Ronnquist, A. and Sigbjornsson, R. (2011), "Time domain modeling of self-excited aerodynamic forces for cablesupported bridges: A comparative study", Comput. Struct., 89, 1306-1322. https://doi.org/10.1016/j.compstruc.2011.03.017.
- Papinutti, M., Aas-Jakobsen, K., Kaasa, L.H., Bruer, A., Marley, M.H., Veie, J. and Holtberget, S.H. (2017), "Coupled wind and wave load analyses of multi-span suspension bridge supported by floating foundations", IABSE Symposium, Vancouver.
- Papinutti, M., Sello, J., Bruer, A., Marley, M.H., Veie, J. and Holtberget, S.H. (2016), "Comparison of alternative floater concepts for a 2-span suspension bridge supported by a tension Leg Platform", IABSE Congress Stockholm, Stockholm.
- Papinutti, M., Stajnko, J.K., Jecl, R., Strukelj, A., Zadravec, M. and Jurado, J.A. (2013), "Assessment of flutter speed on the long span bridges", The 7th Subrata Chakrabarti International Conference on Fluid Structure Interaction, Wessex Institute, London.
- Perez, T. and Fossen, T.I. (2008), "Time-vs. frequency-domain Identification of parametric radiation force models for marine structures at zero speed", Modeling, Identification Control, 29(1), 1-19. https://doi.org/10.4173/mic.2008.1.1.
- R.L. Bisplinghoff and Ashley, H. (1962), Principles of Aeroelasticity, CRC Press.
- Salvatori, L. (2007), Assesment and Migitation of Wind Risk of Suspended-Span Bridge, Civil Eng. Environ. Sci., https://doi.org/10.24355/dbbs.084-200805160200-8.
- Salvatori, L. and Borri, C. (2007), "Frequency-and time-domain methods for the numerical modeling of full-bridge aeroelasticity", Comput. Struct., 85, 675-687. https://doi.org/10.1016/j.compstruc.2007.01.023.
- Sauder, H.S. and Sarkar, P.P. (2017), "A 3-DOF forced vibration system for time-domain aeroelastic parameter identification", Wind Struct., 24(5), 481-500. https://doi.org/10.12989/was.2017.24.5.481.
- Scanlan, R.H. (1978), "The action of flexible bridges under wind, II: Buffeting theory", J. Sound Vib., 2, 60. https://doi.org/10.1016/S0022-460X(78)80029-7.
- Scanlan, R.H. (1993), "Problematics in formulation of wind-force models for bridge decks", J. Eng. Mech., 119(7), 1353-1375. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:7(1353).
- Scanlan, R.H. and Tomko, J.J. (1971), "Airfoil and bridges deck flutter derivatives", J. Eng. Mech. Div. (ASCE), 97, 1717-1737. https://doi.org/10.1061/JMCEA3.0001526
- Scanlan, R.H., Beliveau, J.G. and Budlong, K.S. (1974), "Indicial aerodynamic functions for bridge decks", J. Eng. Mech. Div., 657-672.
- Scanlan, R.H., Joes, N.P. and Singh, L. (1997), "Inter-relations among flutter derivatives", J. Wind Eng. Ind. Aerod., 69-71, 829-837. https://doi.org/10.1016/S0167-6105(97)00209-2.
- Siedziako, B., Oiseth, O. and Ronnquist, A. (2017), "An enhanced forced vibration rig for wind tunnel testing of bridge deck section models", J. Wind Eng. Ind. Aerod., 164, 152-163. https://doi.org/10.1016/j.jweia.2017.02.011.
- Stampler, J., Sello, J., Papinutti, M., Bruer, A., Marley, M.H., Veie, J. and Holtberget, S.H. (2015), Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge, IABSE Conference, Geneva.
- Tubino, F. (2005), "Relationships among aerodynamic admittance functions, flutter derivatives and static coefficients for long-span bridges", J. Wind Eng. Ind. Aerod., 93, 929-950. https://doi.org/10.1016/j.jweia.2005.09.002.
- Wun, T. and Kareem, A. (2011), "Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network", J. Wind Eng. Ind. Aerod., 99, 378-388. https://doi.org/10.1016/j.jweia.2010.12.011.
- Wun, T. and Kareem, A. (2014), "Simulation of nonlinear bridge aerodynamics: A sparse third-order Volterra model", J. Sound Vib., 333, 178-188. https://doi.org/10.1016/j.jsv.2013.09.003.
- Xinzhong, C. and Ahsan, K. (2004), "Efficiency of the implied approximation in the identification of flutter derivatives", J. Struct. Eng., 130, 12. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2070).
- Xiong Jiang, W., Jian, S. and Yong Hui, M. (2011), "Reexamination of the inter-relationship among flutter derivatives of bridge decks", Geotech. Spec. Public. ASCE, 214. https://doi.org/10.1061/47625(404)10
- Xu, F., Ying, X. and Zhang, Z. (2016), "Insight into coupled forced vibration method to identify bridge flutter derivatives.", Wind Struct., 22(3), 273-290. https://doi.org/10.12989/was.2016.22.3.273.
- Xu, X. (2009), "Parametric studies on relationships between flutter derivatives of slender bridge II", Appl. Mathem. Mech., 3(30), 335-341. https://doi.org/10.1007/s10483-009-0307-x.
- Xu, Y.L. (2013), Wind Effects on Cable-Supported Bridges, John Wiley & Sons. https://doi.org/10.1002/9781118188293.
- Yagi, T. (1997), "Wind-induced instabilities of structures", Kungl. tekniska hogskolan, Institutionen for byggkonstruktion, Stockholm.