• 제목/요약/키워드: flutter, time-domain methods

검색결과 6건 처리시간 0.021초

변위 시계열 데이터를 이용한 교량거더의 Flutter 계수 추정기법에 관한 연구 (A Study on the Identification Method for Flutter Derivatives of Bridge Girders using Displacement Time History Data)

  • 이재형;민원;이용재
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.525-533
    • /
    • 2001
  • 교량의 내풍 안전성을 평가하기 위해서는 플러터 계수(Flutter Derivatives)의 안정적 추정이 필요하다. 본 논문에서는 풍동실험에서 얻어지는 시간영역에서의 데이터중 변위 시계열데이터를 이용해서 플러터 계수를 구하는 동특성 계수 측정기법 2가지를 검토하였다. 검토된 MITD(Modified Ibrahim Time Domain) 방법과 AKF(Adaptive Kalman Filtering) 방법은 2차원단면모형 실험으로부터 동시에 8개의 플러터 계수를 산출할 수 있는 유용한 방법이다. 제안된 방법의 실제상황에서의 적용성을 검토하기 위해서 Bandlimited Gausian white noise을 가상의 데이터에 첨가하여 수학적 시뮬레이션으로 잡음에 대한 안정성을 검증해 보았다. 그 결과 교량의 플러터 해석에서는 본 연구에서 검증된 MITD 방법을 통한 플러터 계수의 산출이 추전된다.

  • PDF

Passive Suppression of Nonlinear Panel Flutter Using Piezoelectric Materials with Resonant Circuit

  • Moon, Seong-Hwan;Yun, Chul-Yong;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.1-12
    • /
    • 2002
  • In this study, a passive suppression scheme for nonlinear flutter problem of composite panel, which is believed to be more reliable than the active control methods in practical operations, is proposed. This scheme utilizes a piezoelectric inductor-resistor series shunt circuit. The finite element equations of motion for an electromechanically coupled system is derived by applying the Hamilton\\`s principle. The aerodynamic theory adopted for the present study is based on the quasi-steady piston theory, and von-barman nonlinear strain-displacement relation is also applied. The passive suppression results for nonlinear panel flutter are obtained in the time domain using the Newmark-$\beta$ method. To achieve the best damping effect, optimal shape and location of fille piezoceramic (PZT) patches are determined by using genetic algorithms. The effects of passive suppression are investigated by employing in turn one shunt circuit and two independent shunt circuits. Feasibility studies show that two independent inductor-resistor shunt circuits suppresses flutter more effectively than a single shunt circuit. The results clearly demonstrate that the passive damping scheme that uses piezoelectric shunt circuit can effectively attenuate the flutter.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Efficient Time Domain Aeroelastic Analysis Using System Identification

  • Kwon, Hyuk-Jun;Kim, Jong-Yun;Lee, In;Kim, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권1호
    • /
    • pp.52-60
    • /
    • 2005
  • The CFD coupled aeroelastic analyses have significant advantages over linear panel methods in their accuracy and usefulness for the simulation of actual aeroelastic motion after specific initial disturbance. However, in spite of their advantages, a heavy computation time is required. In this paper, a method is discussed to save a computational cost in the time domain aeroelastic analysis based on the system identification technique. The coefficients of system identification model are fit to the computed time response obtained from a previously developed aeroelastic analysis code. Because the non-dimensionalized data is only used to construct the model structure, the resulting model of the unsteady CFD solution is independent of dynamic pressure and this independency makes it possible to find the flutter dynamic pressure without the unsteady aerodynamic computation. To confirm the accuracy of the system identification methodology, the system model responses are compared with those of the CFD coupled aeroelastic analysis at the same dynamic pressure.

Nonparametric modeling of self-excited forces based on relations between flutter derivatives

  • Papinutti, Mitja;Cetina, Matjaz;Brank, Bostjan;Petersen, Oyvind W.;Oiseth, Ole
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.561-573
    • /
    • 2020
  • Unsteady self-excited forces are commonly represented by parametric models such as rational functions. However, this requires complex multiparametric nonlinear fitting, which can be a challenging task that requires know-how. This paper explores the alternative nonparametric modeling of unsteady self-excited forces based on relations between flutter derivatives. By exploiting the properties of the transfer function of linear causal systems, we show that damping and stiffness aerodynamic derivatives are related by the Hilbert transform. This property is utilized to develop exact simplified expressions, where it is only necessary to consider the frequency dependency of either the aeroelastic damping or stiffness terms but not both simultaneously. This approach is useful if the experimental data on aerodynamic derivatives that are related to the damping are deemed more accurate than the data that are related to the stiffness or vice versa. The proposed numerical models are evaluated with numerical examples and with data from wind tunnel experiments. The presented method can evaluate any continuous fitted table of interpolation functions of various types, which are independently fitted to aeroelastic damping and stiffness terms. The results demonstrate that the proposed methodology performs well. The relations between the flutter derivatives can be used to enhance the understanding of experimental modeling of aerodynamic self-excited forces for bridge decks.

션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어 (Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits)

  • 문성환;김승조
    • Composites Research
    • /
    • 제13권5호
    • /
    • pp.50-59
    • /
    • 2000
  • 본 논문에서는 복합재료 패널 플러터를 억제할 수 있는 두 가지 방법에 대해서 연구하였다. 첫번째, 능동제어 방법에서는 선형 제어 이론을 바탕으로 제어기를 설계하였으며 제어입력이 작동기에 가해진다. 여기서 작동기로는 PZT를 사용하였다. 두 번째, 인덕터와 저항으로 구성되어진 션트회로를 사용하여 시스템의 감쇠를 증가시킴으로써 패널 플러터를 억제할 수 있는 새로운 방법인 수동감쇠기법에 대한 연구가 수행되었다. 이 수동감쇠기법은 능동적 제어보다 강건(robust)하며 커다란 전원 공급이 필요하지 않고 제어기나 감지 시스템과 같이 복잡한 주변 기기가 필요 없이도 실제 패널 플러터 억제에 쉽게 응용할 수 있는 장점을 가지고 있다. 최대의 작동력/감쇠 효과를 얻기 위해서 유전자 알고리듬을 사용하여 압전 세라믹의 형상과 위치를 결정하였다. 해밀턴 원리를 사용해서 지배 방정식을 유도하였으며, 기하학적 대변형을 고려하기 위해 von-Karman의 비선형 변형률-변위 관계식을 사용하였으며 공기력 이론으로는 준 정상 피스톤 1차 이론을 사용하였다. 4절점 4각형 평판 요소를 이용하여 이산화된 유한 요소 방정식을 유도하였다. 효율적인 플러터 억제를 위해 패널 플러터에 중요한 영향을 미치는 플러터 모드를 이용한 모드축약기법을 사용하였으며, 이를 통해 비선형 연계 모달 방정식이 얻어지게 된다. 능동적 제어 방법과 수동 감쇠 기법에 의해 수행되어진 플러터 억제 결과들을 Newmark 비선형 시분할 적분법을 통해 시간 영역에서 살펴 보았다.

  • PDF