DOI QR코드

DOI QR Code

A Study on Ring Buffer for Efficiency of Mass Data Transmission in Unstable Network Environment

불안정한 네트워크 환경에서 대용량 데이터의 전송 효율화를 위한 링 버퍼에 관한 연구

  • 송민규 (한국천문연구원 천문우주기술센터) ;
  • 김효령 (한국천문연구원 전파천문본부)
  • Received : 2020.10.31
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

In this paper, we designed a TCP/IP based ring buffer system that can stably transfer bulk data streams in the unstable network environments. In the scheme we proposed, The observation data stream generated and output by each radio observatory's backend system as a UDP frame is stored as a UDP packet in a large capacity ring buffer via a socket buffer in the client system. Thereafter, for stable transmission to the remote destination, the packets are processed in TCP and transmitted to the socket buffer of server system in the correlation center, which packets are stored in a large capacity ring buffer if there is no problem with the packets. In case of errors such as loss, duplication, and out of order delivery, the packets are retransmitted through TCP flow control, and we guaranteed that the reliability of data arriving at the correlation center. When congestion avoidance occurs due to network performance instability, we also suggest that performance degradation can be minimized by applying parallel streams.

본 논문에서는 불안정한 네트워크 환경에서 안정적으로 대용량 데이터 스트림을 전송할 수 있는 TCP/IP 기반 링 버퍼 시스템을 설계하였다. 우리가 제안한 방식에서 각 전파천문대의 백엔드 시스템으로부터 UDP 프레임으로 생성 및 출력되는 관측 데이터 스트림은 클라이언트 시스템 내의 소켓 버퍼를 경유해 대용량 링 버퍼에 UDP 패킷으로 저장된다. 이후 목적지에 해당하는 상관센터로의 안정적인 전송을 위해 해당 패킷은 TCP로 전송되고 상관센터 내의 서버 시스템은 소켓 버퍼에 수신된 패킷에 이상이 없으면 대용량 링 버퍼에 저장한다. 패킷 손실, 중복 및 순서 역전 등의 이상이 발생할 경우 TCP의 흐름 제어를 통해 패킷은 재전송되며 상관센터에 도착한 데이터는 신뢰성을 보장받게 된다. 또한 네트워크 성능 불안정으로 인한 혼잡 회피 발생 시 병렬 스트림 적용을 통해 성능 저하가 최소화될 수 있도록 하였다.

Keywords

References

  1. A. Szomoru, "EXPReS and the e-EVN," In Proc. The 9th European VLBI Network Symp., Bologna, Italy, Sept. 2008, pp. 40-47.
  2. M. Lee and K. Yoo, "Implementation of a Platform for the Big Scientific Data Transfers," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, 2018, pp. 881-886. https://doi.org/10.13067/JKIECS.2018.13.4.881
  3. A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy. Birkach: Wiley, 2004.
  4. F. Takahashi, T. Kondo, Y. Takahashi and Y. Koyama, Very Long Baseline Interferometer. Tokyo: IOS Press, 2000.
  5. M. Song, H. Kim, Y. Kang, D. Je, S. Wi and S. Lee, "Implementation of Ring Buffer based Massive VLBI Data Stream Input/Output over the Wide Area Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, 2019, pp. 1109-1119. https://doi.org/10.13067/JKIECS.2019.14.6.1109
  6. R. Cappallo, C. Ruszczyk, and A. Whitney, "Mark6: Design and Status," Reports of the Finnish Geodetic Institute, vol. 5, no. 8, Mar. 2013, pp. 9-12.
  7. M. Lindqvist and A. Somoru, "Present status and technical directions of the EVN," 12th European VLBI Network Symp. and Users Meeting, Cagliari, Italy, Oct. 2014, pp. 1-8.
  8. NASA, "Int. VLBI Service for Geodesy and Astrometry," Annual report 2008, July. 2009.
  9. M. Song, H. Kim, D. Byun, T. Jung, Y. Kang, H. Kim, J. Kim, S. Wi, S. Lee, D. Roh, S. Oh, and J. Yeom, The Design and Implementation of e-KVN Network for the Data Processing in Wideband VLBI Observation. Daejoen: Korea Astronomy and Space Science Institute, 2019, pp. 3-5.
  10. M. Song, Y. Kang and H. Kim, "A Study on the Performance Monitoring and Optimization of a High Speed Network for the Transfer of Massive VLBI Data," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 6, 2013, pp. 1097-1108 https://doi.org/10.13067/JKIECS.2019.14.6.1097