참고문헌
- Abdelrahman, A. A., Eltaher, M. A., Kabeel, A. M., Abdraboh, A. M. and Hendi, A. A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
- Abdelrahman, A. A., Mohamed, N. A. and Eltaher, M. A. (2020), Static bending of perforated nanobeams including surface energy and microstructure effects. Engineering with Computers, 1-21. https://doi.org/10.1007/s00366-020-01149-x
- Alashti, R. A. and Abolghasemi, A.H., (2014), "A size-dependent Bernoulli-Euler beam formulation based on a new model of couple stress theory", J. Eng., 27(6), 951-960.
- Agwa, M. A. and Eltaher, M. A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Physics A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9
- Almitani, K. H., Abdelrahman, A. A. and Eltaher, M. A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Almitani, K. H., Abdelrahman, A. A. and Eltaher, M. A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
- Amabili, M. (2006), "Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections", J. Sound Vib., 291(3-5), 539-565. https://doi.org/10.1016/j.jsv.2005.06.007
- Amar, L. H. H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089
- Ansari, R., Torabi, J. and Hassani, R. (2019), "Vibration analysis of FG-CNTRC plates with an arbitrarily shaped cutout based on the variational differential quadrature finite element method", Mater. Res. Express, 6(12), 125086. https://doi.org/10.1088/2053-1591/ab5b57
- Ansari, R., Hassani, R. and Torabi, J. (2020), "Mixed-type formulation of higher-order shear deformation theory for vibration and buckling analysis of FG-GPLRC plates using VDQFEM", Compos. Struct., 235, 111738.https://doi.org/10.1016/j.compstruct.2019.111738
- Arefi, M. (2019), "Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory", Struct. Eng. Mech., 69(2), 145-153. https://doi.org/10.12989/sem.2019.69.2.145
- Bellifa, H., Benrahou, K. H., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2017), A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457
- Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M. E. A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014
- Chaabane, L. A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A., ... & Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185
- Chan, J., Eichenfield, M., Camacho, R. and Painter, O. (2009), "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity", Optics Express, 17(5), 3802-3817. https://doi.org/10.1364/OE.17.003802
- Ebrahimi, F., Jafari, A. and Mahesh, V. (2019a), "Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates", Struct. Eng. Mech., 72(1), 113-129. https://doi.org/10.12989/sem.2019.72.1.113
- Ebrahimi, F., Fardshad, R. E. and Mahesh, V. (2019b), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391. https://doi.org/10.12989/anr.2019.7.6.391
- Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019c), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77. https://doi.org/10.12989/anr.2019.7.2.077
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019d), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223
- Eltaher, M. A., Mahmoud, F. F., Assie, A. E. and Meletis, E. I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002
- Eltaher, M. A., Hamed, M. A., Sadoun, A. M. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
- Eltaher, M. A., El-Borgi, S. and Reddy, J. N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
- Eltaher, M. A., Kabeel, A. M., Almitani, K. H. and Abdraboh, A. M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
- Eltaher, M. A., Abdraboh, A. M. and Almitani, K. H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Eltaher, M. A., Omar, F. A., Abdalla, W. S. and Gad, E. H. (2019a), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves in Random and Complex Media, 29(2), 264-280.https://doi.org/10.1080/17455030.2018.1429693
- Eltaher, M.A., Mohamed. N (2020a), "Nonlinear Stability and Vibration of Imperfect CNTs by Doublet Mechanics", Appl. Math. Comput., 382,125311. https://doi.org/10.1016/j.amc.2020.125311
- Eltaher, M.A., Mohamed., N.A., (2020b), "Vibration of Nonlocal Perforated Nanobeams under General Boundary Conditions", Smart Struct. Syst., 25(4), 510-514. https://doi.org/10.12989/sss.2020.25.4.501
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S., and A.E. Alshorbagy. (2020a), "Mechanical Behaviors of Piezoelectric Nonlocal Nanobeam with Cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, M.A., and A.E. Alshorbagy. (2020b), "Mechanical Analysis of Cutout Piezoelectric Nonlocal Nanobeam including Surface Energy Effects", Struct. Eng. Mech., 76(1), 141-151 https://doi.org/10.12989/sem.2020.76.1.141
- Eltaher, M. A., Mohamed, N. and Mohamed, S. A. (2020c), Nonlinear buckling and free vibration of curved CNTs by doublet mechanics. Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213
- Eltaher, M. A. and Abdalrahmaan, A.A., (2020), "Bending Behavior of squared cutout Nanobeams incorporating Surface Stress Effects", Steel Compos. Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143
- Gao, X. L. and Park, S. K. (2007), "Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem", J. Solids Struct., 44(22-23), 7486-7499. https://doi.org/10.1016/j.ijsolstr.2007.04.022
- Gao, X. L. and Mahmoud, F. F. (2014), "A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects", Zeitschrift für angewandte Mathematik und Physik, 65(2), 393-404. https://doi.org/10.1007/s00033-013-0343-z
- Gao, X. L. (2015), "A new Timoshenko beam model incorporating microstructure and surface energy effects", Acta Mechanica, 226(2), 457-474. https://doi.org/10.1007/s00707-014-1189-y
- Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008
- Hamed, M. A., Sadoun, A. M. and Eltaher, M. A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089
- Hamed, M. A., Mohamed, N. and Eltaher, M. A. (2020), "Stability Buckling and Bending of Nanobeams including Cutouts", Eng. Computers, 1-14. https://doi.org/10.1007/s00366-020-01063-2
- Jahangiri, R., Jahangiri, H. and Khezerloo, H. (2015), "FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory", Steel Compos. Struct., 18(6), 1541-1555. https://doi.org/10.12989/scs.2015.18.6.1541
- Jeong, K. H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
- Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019a), "Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell", Thin-Wall. Struct., 143, 106152. https://doi.org/10.1016/j.tws.2019.04.044
- Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019b), "Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via Homotopy Perturbation Method", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-019-00841-x
- Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimensional Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
- Khater, M. E., Eltaher, M. A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003
- Khatir, S., Tiachacht, S., Thanh, C. L., Bui, T. Q. and Wahab, M. A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509
- Kim, J. H., Jeon, J. H., Park, J. S., Seo, H. D., Ahn, H. J. and Lee, J. M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016
- Kocaturk, T. and Akbas, S. D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Lam, D. C., Yang, F., Chong, A. C. M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Physics Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369
- Lee, Y. Y. (2016), The effect of leakage on the sound absorption of a nonlinear perforated panel backed by a cavity. J. Mech. Sci., 107, 242-252. https://doi.org/10.1016/j.ijmecsci.2016.01.019
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Engineering, 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
- Ma, H. M., Gao, X. L. and Reddy, J. N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Physics Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E. and Meletis, E. I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
- McFarland, A. W. and Colton, J. S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024
- Mindlin, R. D. (1963), "Influence of couple stresses on stress concentrations", Exp. Mech., 3(12), 307-308. https://doi.org/10.1007/BF02327098
- Mohamed, N., Eltaher, M. A., Mohamed, S. A. and Seddek, L. F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737
- Mohamed, N., Mohamed, S. A. and Eltaher, M. A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2
- Park, W. T., Han, S. C., Jung, W. Y. and Lee, W. H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
- Phung-Van, P., Tran, L. V., Ferreira, A. J. M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017a), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dynam., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6
- Phung-Van, P., Ferreira, A. J. M., Nguyen-Xuan, H. and Wahab, M. A. (2017b), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Composites Part B Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012
- Phung-Van, P., Thanh, C. L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FGCNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087
- Phung-Van, P., Thai, C. H., Nguyen-Xuan, H. and Wahab, M. A. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036
- Rahmani, O., Hosseini, S. A. H., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-20. https://doi.org/10.12989/scs.2018.26.5.607
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S. B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307
- Sivakumar, N., Kanagasabapathy, H. and Srikanth, H. P. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Materials Today: Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177
- Thanh, C. L., Phung-Van, P., Thai, C. H., Nguyen-Xuan, H. and Wahab, M. A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025
- Thanh, C. L., Tran, L. V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Methods Appl. Mech. Eng., 353, 253-276. https://doi.org/10.1016/j.cma.2019.05.002
- Thanh, C. L., Tran, L. V., Bui, T. Q., Nguyen, H. X. and AbdelWahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
- Thanh, C. L., Ferreira, A. J. M. and Wahab, M. A. (2019c), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin-Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427
- Thanh, C. L., Tran, L. V., Vu-Huu, T. and Abdel-Wahab, M. (2019d), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Methods Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Xiao, Y., Wen, J. and Wen, X. (2012), "Broadband locally resonant beams containing multiple periodic arrays of attached resonators", Physics Letters A, 376(16), 1384-1390. https://doi.org/10.1016/j.physleta.2012.02.059
- Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zhang, Z. J., Zhang, Q. C., Li, F. C., Yang, J. W., Liu, J. W., Liu, Z. Y. and Jin, F. (2019), "Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study", Thin-Wall. Struct., 137, 185-196. https://doi.org/10.1016/j.tws.2019.01.004
피인용 문헌
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2020, https://doi.org/10.12989/gae.2021.24.6.545
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
- Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.023