• Title/Summary/Keyword: microstructure effect

Search Result 2,436, Processing Time 0.026 seconds

The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel (X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향)

  • Park, J.S.;Kim, D.W.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

Effect of Green Microstructure on the Sintering and Properties of Aluminum Nitride (성형미세구조가 질화알루미늄의 소결 및 물성에 미치는 영향)

  • 이해원;전형우;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.209-216
    • /
    • 1995
  • In order to investigate the effect o green microstructure on the sintering behavior and properties of AlN ceramics, samples were prepared by slip casting and dry pressing. The slip cast samples had high green density, fine pore size and narrow pore size distribution. They showed much higher sinterability and more homogeneous sintered microstructure compared to the dry pressed samples. Both increased thermal conductivity and flexural strength for samples prepared by slip casting could be attributed to the improved microstructural homogeneity with isolated second phase(s).

  • PDF

Sliding Wear Behavior of AISI 52100 Steel with Pearlitic and Bainitic Microstructures (미세조직 변화에 따른 AISI 52100 강의 미끄럼마멸 특성)

  • Yoon, N.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.479-484
    • /
    • 2011
  • Dry sliding wear behavior of AISI 52100 steel that has a pearlite or bainite microstructure was characterized to explore the effect of microstructure on the wear of the steel. Isothermal heat treatments were employed to obtain the different microstructures. Pin-on-disk type wear tests of the steel disk were performed at loads of 25~125N in air against an alumina ball. Sliding speed and wear distance used were 0.1m/sec and 300m, respectively. Worn surfaces, wear debris and cross-sections of the worn surfaces were examined with SEM to investigate the wear mechanism of the steel. Hardness of the steel was also evaluated. Wear rate of the steel was correlated with the hardness and the microstructure. On the whole, wear resistance increased with an increase in hardness. However, the pearlite microstructure showed superior wear resistance as compared to the bainite microstructure with a similar hardness. The effect of the microstructure on the wear rate was attributed to the morphological differences of the carbide in the microstructure, which was found to have a significant effect on strain hardening during the wear.

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

A Study on the Influence of Induction Coil Movement Speed and Frequency on Induction Hardening of SCM440 Steel (SCM440 강의 유도 경화에 미치는 유도코일 이동속도 및 주파수의 영향에 관한 연구)

  • Ki-Woo Nam;Ki-Hang Shin;Byoung-Chul Choi;Gum-Hwa Lee;Jong-Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.813-823
    • /
    • 2023
  • In this study, microstructure, hardening layer hardness, and case depth were evaluated after induction hardening(IH) of base metal specimen(BM) treated with annealing and quenching-tempering specimen(QT) treated with quenching and tempering. The microstructure after IH was significantly influenced by the microstructure before IH and the induction coil heating movement speed, but the effect of the induction frequency was very small. The hardness of the hardened layer at an induction coil heating movement speed of 15 mm/s or less was more influenced by the microstructure before IH than the induction coil travel speed and induction frequency. The induction coil travel speed has the significantly effect on the case depth, the induction frequency has effect and the microstructure before IH has a small effect.

Analytical Quantification and Effect of Microstructure Development in Thick Film Resistor Processing

  • Lee, Byung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.33-37
    • /
    • 2012
  • Microstructure developments of $RuO_2$ based thick film resistors during firing as a function of glass viscosity were analytically quantified and its effect on the electrical property was investigated. The microstructure development was retarded as the viscosity of glass was increased. It was found that the viscosity range for each stage of microstructure development are as follows ; $7500-10^5Pa{\cdot}s$ for the glass sintering, $2000-7500Pa{\cdot}s$ for the glass island formation, $700-2000Pa{\cdot}s$ for the glass spreading, and $50-700Pa{\cdot}s$ for the infiltration. The sheet resistivity decreased as the viscosity of glass in the resistor film increased due to the higher chance of sintering for the conductive particles with the higher viscosity of the glass.

Effect of Siliceous Slury Coating on Microstructure of Concrete under Damp Environment (규산질미분말혼합시멘트계도포방수재료가 습윤환경하의 콘크리트의 미세조직에 미치는 영향)

  • 오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.1-4
    • /
    • 1992
  • This paper deals with the effect of siliceous slurry coating on concrete microstructure under damp environment. This material is mixed inorganic powder consisted of silica, cement and fine sand and water. Water pressure was given on the coated surface of concrete. for estimation on effect of siliceous slurry coating, microstructure of coated concrete was observed through SEM, and chemical components of crystals were analyzed with X-ray diffraction and EDX. A number of needle and fibrous crystals were produced in microstructure. And based on X-ray diffraction and EDX, needle crystal mainly consist of Al, Si, and Ca, and it is concluded to be ettringite. Fibrous crystals consist of Ca and Si, and it to be calcium silicate hydrate.

  • PDF

Estimation of Crystal Production in Microstructure of Mortar Cooated with Siliceous Slurry Coatings (규산질비분말혼합시멘트계도포방수재료를 도포한 몰탈 조직에서의 결정생성 평가)

  • 오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.89-92
    • /
    • 1993
  • This paper deals with the effect of siliceous slurry coatings on mortar microstructure under a damp environment. For estimation on effect of siliceous slurry coating, microstructure of coated mortar was observed through SEM. Crystal production in mivrosturcture of coated mortar was periodically increased, and more produced in mortar of high water-cement ratios. And they were generated mainly in mortar ranging from the surface to the inside about 2.5 or 3mm deep.

  • PDF

Effect of $Sb_2O_3$ Addition on the Microstructure and the PTCR Characteristic in $BaTiO_3$ Ceramics ($BaTiO_3$ 세라믹스에 있어서 미세구조와 PTCR특성에 미치는 $Sb_2O_3$의 첨가효과)

  • 김준수;이병하;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.185-193
    • /
    • 1994
  • Effect of Sb2O3 addition on microstructure and the PTCR characteristic was investigated. The range of the Sb2O3 content and the sintering temperature showing semiconducting and PTCR characteristic, were 0.05~0.125 mol%, and over 130$0^{\circ}C$, respectively. We found that PTCR characteristic, that is, room-temperature resistivity and specific resistivity ration were dependent on the microstructure.

  • PDF

Influence of negative bias voltage on the microstructure of Cr-Si-N films deposited by a hybrid system of AIP plus MS (Negative bias voltage effect에 따른 Cr-Si-N 박막의 미세구조에 대한 연구)

  • Sin, Jeong-Ho;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.130-131
    • /
    • 2009
  • AIP(arc ion plating)방법과 마그네슘 스퍼터링(DC reactive magnetron sputtering) 방법을 결합시킨 하이브리드 코팅 시스템으로 Cr-Si-N 코팅막을 합성하였다. 고분해능 TEM 및 SEM 분석들로부터 negative bias voltage에 따른 미세구조의 영향을 나타내었다. negative bias voltage의 증가에 따라 columnar microstructure가 amorphous microstructure로 변화하였다. bias voltage effect에 의해 Cr-Si-N 코팅막내 입자의 크기가 미세해지고 나노 복합체를 잘 형성하였다.

  • PDF