DOI QR코드

DOI QR Code

Compatibility of POSS Composites with Silicone Monomers and Application to Contact Lenses Material

  • Lee, Min-Jae (Department of Optometry & Vision Science, Daegu Catholic University) ;
  • Lee, Kyungmun (Devision of Research & Development, Vision Science Co., Ltd.) ;
  • Sung, A-Young (Department of Optometry & Vision Science, Daegu Catholic University)
  • Received : 2020.06.30
  • Accepted : 2020.09.14
  • Published : 2020.12.20

Abstract

This research was conducted to analyze the compatibility of used monomers and produce the high functional contact lens material containing silicone monomers. Silicone monomer (Sil-OH), Trimethylsilylmethacrylate (TSMA) were used as additives for the basic combination of Polyhedral Oligomeric Silsesquioxane (POSS), methyl methacrylate (MMA) and methyl acrylate (MA). And also, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the fabricated lenses of all combinations are optically excellent and thus used monomers have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic lens material were varied in each case. Especially TSMA with POSS increases the oxygen permeability and Sil-OH with POSS increases the wettability by the addition of Sil-OH. These materials were considered to have compatibility each other, so it can be used in functional contact lens material.

Keywords

References

  1. Davies, B. L.; Samoc, M.; Woodruff, M. Chem. Mater. 1996, 8, 2586. https://doi.org/10.1021/cm9504448
  2. Harmer, M. A.; Farneth, W. E.; Sun, Q. J. J. Am. Chem. Soc. 1996, 118, 7708. https://doi.org/10.1021/ja9541950
  3. Yoshida, M.; Prasad, P. N. Applied Optics 1996, 35, 1500. https://doi.org/10.1364/AO.35.001500
  4. Scott, D. W. J. Am. Chem. Soc. 1946, 68, 356. https://doi.org/10.1021/ja01207a003
  5. Brown, J. F.; Vogt, L. H.; Katchman, A.; Eustance, J. W.; Kieser, K. M.; Krantz, K. E. J. Am. Chem. Soc. 1960, 82, 6194. https://doi.org/10.1021/ja01508a054
  6. Li, G.; Wang, L.; Ni, H.; Pittman, C. U. J. Inorg. Organomet. Polym. 2001, 11, 123. https://doi.org/10.1023/A:1015287910502
  7. Phillips, S. H.; Haddad, T. S.; Tomezak, S. J. Curr. Opin. Solid Sate. Mat. Sci. 2004, 8, 21 https://doi.org/10.1016/j.cossms.2004.03.002
  8. Fesh, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741. https://doi.org/10.1021/ja00187a028
  9. Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302. https://doi.org/10.1021/ma960609d
  10. Li, G. Z.; Ye, M. L.; Shi, L. H. Chin. J. Polym. Sci. 1994, 12, 331. https://doi.org/10.1016/B978-0-444-81708-2.50032-4
  11. Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302. https://doi.org/10.1021/ma960609d
  12. Li, G. Z.; Ye, M. L.; Shi, L. H. Chin. J. Polym. Sci. 1996, 14, 41.
  13. Romo-Uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D. J. Polym. Sci. Polym. Phys. 1998, 36, 1857. https://doi.org/10.1002/(SICI)1099-0488(199808)36:11<1857::AID-POLB7>3.0.CO;2-N
  14. Fu, B. X.; Gelfer, M. Y.; Hsiao, B. S.; Phillips, S.; Viers, B.; Blansky, R. Polymer 2003, 44, 1499 (2003). https://doi.org/10.1016/S0032-3861(03)00018-1
  15. Joshi, M.; Butola, B. S. Polymer 2004, 45, 4953. https://doi.org/10.1016/j.polymer.2004.04.057
  16. Teo, J. K. H.; Teo, K. C.; Pan, B.; Xiao, Y.; Lu, X. Polymer 2007, 48, 5671. https://doi.org/10.1016/j.polymer.2007.07.059
  17. Kim, T. H.; Ye, K. H.; Sung, A. Y. J. Kor. Chem. Soc. 2009, 53, 755. https://doi.org/10.5012/jkcs.2009.53.6.755
  18. Lee, M. J.; Sung, A. Y.; Kim, T. H. J. Korean Ophthalmic Opt. Soc. 2014, 19, 43. https://doi.org/10.14479/jkoos.2014.19.1.43
  19. Nicolson, P. C.; Vogt, J. Biomaterials 2001, 22, 3273. https://doi.org/10.1016/S0142-9612(01)00165-X