DOI QR코드

DOI QR Code

Introduction of Inverse Analysis Model Using Geostatistical Evolution Strategy and Estimation of Hydraulic Conductivity Distribution in Synthetic Aquifer

지구통계학적 진화전략 역산해석 기법의 소개 및 가상 대수층 수리전도도 분포 예측에의 적용

  • Park, Eungyu (Department of Geology, Kyungpook National University)
  • 박은규 (경북대학교 지구시스템과학부 수리지질학 연구실)
  • Received : 2020.10.16
  • Accepted : 2020.11.17
  • Published : 2020.12.28

Abstract

In many geological fields, including hydrogeology, it is of great importance to determine the heterogeneity of the subsurface media. This study briefly introduces the concept and theory of the method that can estimate the hydraulic properties of the media constituting the aquifer, which was recently introduced by Park (2020). After the introduction, the method was applied to the synthetic aquifer to demonstrate the practicality, from which various implications were drawn. The introduced technique uses a global optimization technique called the covariance matrix adaptation evolution strategy (CMA-ES). Conceptually, it is a methodology to characterize the aquifer heterogeneity by assimilating the groundwater level time-series data due to the imposed hydraulic stress. As a result of applying the developed technique to estimate the hydraulic conductivity of a hypothetical aquifer, it was confirmed that a total of 40000 unknown values were estimated in an affordable computational time. In addition, the results of the estimates showed a close numerical and structural similarity to the reference hydraulic conductivity field, confirming that the quality of the estimation by the proposed method is high. In this study, the developed method was applied to a limited case, but it is expected that it can be applied to a wider variety of cases through additional development of the method. The development technique has the potential to be applied not only to the field of hydrogeology, but also to various fields of geology and geophysics. Further development of the method is currently underway.

수리지질학을 포함한 많은 지질학 분야에 있어 지하 매질의 불균질성을 규명하는 것은 큰 중요성을 가진다. 본 연구에서는 최근 Park(2020)에 의해 소개된 바 있는 대수층을 구성하는 매질의 수리물성을 예측할 수 있는 기법의 개념 및 이론을 간단히 소개하고, 가상의 대수층에 해당 기법을 적용하여 기법에 의한 결과들의 다양한 시사점을 도출하였다. 소개하는 기법은 공분산행렬 적응 진화전략이라는 광역최적화 기법을 사용하며, 개념적으로 대수층에 가해지는 수리적 스트레스에 의한 지하수위 변화 자료를 동화하여 대수층 불균질성을 특성화하는 방법론이다. 가상의 대수층의 수리전도도 예측에 개발 기법을 적용한 결과, 총 40000개 미지의 값을 매우 빠른 시간 내에 예측함을 확인하였다. 또한, 예측의 결과는 레퍼런스 수리전도도와 수치적 및 구조적으로 큰 유사성을 보여 예측의 질적 수준이 높음을 확인하였다. 본 연구에서는 매우 제한적인 케이스에 대하여 적용을 실시하였으나, 기법의 추가개발을 통하여 보다 다양한 케이스에의 적용이 가능할 것으로 예상되며 현재 이를 위한 추가 개발이 이루어지고 있는 상황이다. 개발 기법은 수리지질학 분야 뿐만 아니라 다양한 지질학 및 지구물리 분야에 적용될 수 있는 잠재성을 갖추고 있다.

Keywords

References

  1. Cirpka, O.A. and Kitanidis, P.K. (2000) Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data. Advances in Water Resources, v.24(1), p.89-103. https://doi.org/10.1016/S0309-1708(00)00007-5
  2. Deutsch, C.V. and Journel, A.G. (1992) Geostatistical software library and user's guide. New York, 119(147).
  3. Evensen, G. (2003) The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, v.53(4), p.343-367. https://doi.org/10.1007/s10236-003-0036-9
  4. Hansen, N. and Ostermeier, A. (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, v.9(2), p.159-195. https://doi.org/10.1162/106365601750190398
  5. Harbaugh, A.W. (2005) MODFLOW-2005, the U.S. Geological Survey modular ground-watermodel - the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16.
  6. Jeong, J. and Park, E. (2019) Theoretical development of the history matching method for subsurface characterizations based on simulated annealing algorithm. Journal of Petroleum Science and Engineering, v.180, p.545-558. https://doi.org/10.1016/j.petrol.2019.05.084
  7. Kang, P.K., Lee, J., Fu, X., Lee, S., Kitanidis, P.K. and Juanes, R. (2017) Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection. Water Resources Research, v.53(5), p.4444-4458. https://doi.org/10.1002/2016WR020089
  8. Kitanidis, P.K. (1995) Quasi-linear geostatistical theory for inversing. Water Resources Research, v.31(10), p.2411-2419. https://doi.org/10.1029/95WR01945
  9. Kitanidis, P.K. and Lee, J. (2014) Principal Component Geostatistical Approach forlarge-dimensional inverse problems. Water Resources Research, v.50, p.5410-5427. https://doi.org/10.1002/2014WR015483
  10. Lee, J. and Kitanidis, P. (2014) Large-scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach(PCGA). Water Resources Research, v.50, p.5410-5427. https://doi.org/10.1002/2014WR015483
  11. Lee, J., Kokkinaki, A. and Kitanidis, P.K. (2018) Fast large-scale joint inversion for deep aquifer characterization using pressure and heat tracer measurements. Transport Porous Med., v.123(3), p.533-543. https://doi.org/10.1007/s11242-017-0924-y
  12. Nash, J.E. and Sutcliffe, J.V. (1970) River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol., v.10(3), p.282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  13. Nowak, W. and Cirpka, O.A. (2006) Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data. Water Resources Research, v.42(8).
  14. Park, E. (2020) A geostatistical evolution strategy for subsurface characterization: Theory and validation through hypothetical two-dimensional hydraulic conductivity fields. Water Resources Research, v.56.
  15. Sanchez-Leon, E., Erdal, D., Leven, C. and Cirpka, O.A. (2020) Comparison of Two Ensemble Kalman-Based Methods for Estimating Aquifer Parameters from Virtual2-D Hydraulic and Tracer Tomographic Tests. Geosciences, v.10(7), p.276. https://doi.org/10.3390/geosciences10070276
  16. Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transaction on Image Processing, v.13(4), p.600-612. https://doi.org/10.1109/TIP.2003.819861
  17. Yeh, T.C.J., Jin, M. and Hanna, S. (1996) An iterative stochastic inversemethod: Conditional effective transmissivity and hydraulic head fields. Water Resources Research, v.32(1), p.85-92. https://doi.org/10.1029/95WR02869
  18. Zha, Y., Yeh, T.C.J., Illman, W.A., Zeng, W., Zhang, Y., Sun, F. and Shi, L. (2018) A reduced-order successive linear estimator for geostatistical inversion and its application in hydraulic tomography. Water Resources Research, v.54(3), p.1616-1632. https://doi.org/10.1002/2017WR021884