DOI QR코드

DOI QR Code

A Field Study on the Application of Pilot-scale Vertical Flow Reactor System into the Removal of Fe, As and Mn in Mine Drainage

현장 파일럿 실험을 통한 광산배수 내 Fe, As, Mn 자연정화처리 효율평가

  • 권오훈 (한국광해관리공단 광해방지연구실) ;
  • 박현성 (한국광해관리공단 광해방지연구실) ;
  • 이진수 (한국광해관리공단 광해방지연구실) ;
  • 지원현 (한국광해관리공단 광해방지연구실)
  • Received : 2020.11.04
  • Accepted : 2020.12.21
  • Published : 2020.12.28

Abstract

This study aimed to monitor a pilot-scale vertical flow reactor (VFR) system being operated in long-term for water quality control of pH-neutral mine drainage containing Fe, Mn and As, discharged in D mine site. The treatment systems of VFR and zero manganese reactor (ZMR) consisted of sand/limestone, and steel slag/limestone, respectively. The systems were operated during about six months in order to evaluate their long-term treatment efficiency It was observed that both pH and alkalinity of mine drainage were remarkably increased and more than 98% of Fe, As and Mn ions was continuously removed during the tested period of time. In conclusion, the field results of this work demonstrated that the vertical flow reactor system can effectively treat mine drainage contaminated by Fe, As and Mn.

본 연구는 중성의 pH 조건에서 Fe, Mn, As이 포함된 복합오염수를 배출하는 광산배수의 수질특성을 모니터링하였다. 침출수를 처리하기 위해 모래와 석회석으로 이루어진 수직흐름반응조(VFR, Vertical Flow Reactor)와 제강슬래그와 석회석을 적용한 반응조(ZMR)로 구성된 현장파일럿 장치를 설치하여 약 6개월간 운영하였다. 광산배수 내 존재하는 Fe, Mn, As에 대한 현장파일럿 장치의 처리효율을 평가하였다. 중성의 알칼리 수질특성을 가진 D광산 침출수에 VFR와 ZMR 공정을 적용한 결과, pH와 알칼리도가 효과적으로 상승하여 Fe과 As가 99%이상 제거되었으며 Mn은 98%이상 제거하여 복합오염물질 처리가 가능함을 확인하였다. 본 연구결과를 통해 Fe, As, Mn이 포함된 소규모 광산배수에 자연정화기반의 공법이 적용가능함을 확인하였다.

Keywords

References

  1. 한국광해관리공단, 2014. 고산도 광산배수 처리를 위한 자연정화 알칼리공급조 개발, 기술총서 2014-079
  2. Kim, A.-Y., Ko, M.-S., Kim, J.-Y., Kim, K.-W., Bang, S., Sim, Y. and Park, H.-S. (2011) Removal Technology for Arsenic in Mine Drainage with the Consideration of Its Geochemical Characteristics. J. Korean Soc. Geosystem Eng., v.48, n.2, p.145-154.
  3. Blanco, I., Sapsford, D.J., Trumm, D., et al. (2018) International Trials of Vertical Flow Reactors for Coal Mine Water Treatment. Mine Water Environ, v.37, p.4-17. https://doi.org/10.1007/s10230-017-0491-z
  4. Cheong, Y.W., Choi, Y., Yim, G.J., Ji, S.W., Park, H.S. and Sim, Y.S. (2012) Design of flushing systems for removing sludge from limestone aggregates in SAPS. J. Korean Soc. Geosystem Eng., v.49, n.6, p.717-727.
  5. Kim, D.-K., Ji, W.H., Kim, D.-M., Park, H.-S. and Oh, Y.S. (2018) Evaluation of Mn removal efficiency from the mine drainage in the presence of Fe using slag complex reactors. Econ. Environ. Geol., v.51(5), p.401-407. https://doi.org/10.9719/EEG.2018.51.5.401
  6. Florence, K., Sapsford, D.J., Johnson, D.B., Kay, C.M. and Wolkersdorfer, C. (2016) Iron-mineral accretion from acid mine drainage and its application in passive treatment. Environ. Technol., v.37(11), p.1428-1440. https://doi.org/10.1080/09593330.2015.1118558
  7. Gazea, B., Adam, K. and Kontopoulos, A. (1996) A review of passive systems for the treatment of acid mine drainge. Minerals Engineering, v.9, n.1, p.23-42. https://doi.org/10.1016/0892-6875(95)00129-8
  8. Ivan Blanco, Devin J. Sapsford, Dave Trumm, James Pope, Natalie Kruse and Young-wook Cheong (2018) Hamish McLauchlan, Eden Sinclair, Paul Weber, William Olds. Mine Water Environ., v.37, p.4-17. https://doi.org/10.1007/s10230-017-0491-z
  9. Ji, W.H., Park, H.S., Lee, H.J. and Sim, Y.S. (2009) Mine drainage engineering issue of Passive treatment. J. Mine reclam. Technol., v.3, n.2, p.220-227.
  10. Kruse, N.A., Mackey, A.L., Bowman, J.R., Brewster, K. and Riefler, R.G. (2012) Alkalinity production as an indicator of failure in steel slag leach beds treating acid mine drainage. Environ. Earth Sci., v.67, n.5, p.1389-1395. https://doi.org/10.1007/s12665-012-1583-5
  11. Mine Reclamation Corporation (2016) Development of treatment technology on according to mine drainage properties, MIRECO report 2016-50
  12. Mine Reclamation Corporation, 2018. Development of maintenance and management technology on treatment system of mine drainage, MIRECO report 2018-41
  13. Mine Reclamation Corporation, 2018. Development of treatment technology on according to mine drainage properties, MIRECO report 2018-40
  14. Park, J.H., Han, Y.-S. and Ahn, J.S. (2016) Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream, Water Res., v.106, p.295-303. https://doi.org/10.1016/j.watres.2016.10.006
  15. Patil, D.S., Chavan, S.M. and Oubagaranadin, John U. Kennedy (2016) A review of technologies for manganese removal from wastewater. J. Environ. Chem. Eng., v.4, n.1, p.468-487. https://doi.org/10.1016/j.jece.2015.11.028
  16. Rahul Kumar, Kang, C.U., Dinesh Mohan, Moonis, A.K., Lee, J.H., Lee, S.S. and Jeon, B.H. (2020) Waste sludge derived adsorbents for arsenate removal from water. Chemosphere. 239.
  17. Sapsford. D.J., Andrew Barnes, Matt Dey, Keith Wiliams, Adam Jarvis and Paul Younger (2007) Low Footprint Passive Mine Water Treatment: Field Demonstration and Application. Mine Water and the Environment, v.26(4), p.243-250. https://doi.org/10.1007/s10230-007-0012-6
  18. Sapsford. D.J. and K.P. Williams (2009) Sizing criteria for a low footprint passive mine water treatment system. Water Research, v.43, p.423-432. https://doi.org/10.1016/j.watres.2008.10.043
  19. Tabak, H.H. and Govind, R. (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation, v.14, p.437-452. https://doi.org/10.1023/A:1027332918844
  20. Zahar, M.S.M., Kusin, F.M. and Muhammad S.N. (2015) Adsorption of manganese in aqueous solution by steel slag. Procedia Environ. Sci., v.30, p.145-150. https://doi.org/10.1016/j.proenv.2015.10.026
  21. Ziemkiewicz, P.F., Skousen, J.G. and Simmons, J. (2003) Long-term performance of passive acid mine drainage treatment systems. Mine Water Environ., v.22, p.118-129. https://doi.org/10.1007/s10230-003-0012-0