DOI QR코드

DOI QR Code

Analysis of Nectar Characteristics of Idesia polycarpa

유망 밀원수종 이나무의 화밀 특성 분석

  • Kim, Young Ki (Division of Special Forest Product, National Institute of Forest Science) ;
  • Song, Jeong Ho (Division of Special Forest Product, National Institute of Forest Science) ;
  • Park, Moon Su (Department of Forest Resources, Sunchon National University) ;
  • Kim, Mun Seop (Division of Special Forest Product, National Institute of Forest Science)
  • 김영기 (국립산림과학원 산림소득자원연구과) ;
  • 송정호 (국립산림과학원 산림소득자원연구과) ;
  • 박문수 (순천대학교 산림자원학과) ;
  • 김문섭 (국립산림과학원 산림소득자원연구과)
  • Received : 2020.08.06
  • Accepted : 2020.09.16
  • Published : 2020.12.31

Abstract

We assessed the nectar source potential of a prospective honey plant, Idesia polycarpa, by analyzing nectar volume, free sugar content, and free amino acid content. Idesia polycarpa is a dioecious tree; the males bloom approximately four days earlier than females, and the blooming period is approximately 17 days-from March 14th to March 30th. Upon investigating the patterns of nectar secretion, it was found that male flowers peak on the third day of blooming at 5.0 ± 2.5 μL, and female flowers peak on the second day of blooming, at 1.1 ± 0.4 μL. There was a significant difference between males and females in the total nectar volume (9.7 ± 2.9 μL for males and 1.7 ± 0.5 μL for females) and the dried nectar volume (2.2 ± 0.6 μL for males, 0.8 ± 0.3 μL for females) during the blooming period. The free sugar content of floral nectar was 54.6 ± 15.4 ㎍/μL for males and 20.5 ± 4.9 ㎍/μL for females, and the sugar content per flower was higher in males (170.7 ± 15.4 ㎍) than in females (24.9 ± 5.5 ㎍). Our analysis of the amino acid content showed that 20.4 ± 3.9 mg/L (comprised of 19 amino acids) is produced in male flowers and 3.2 ± 0.1 mg/L (11 amino acids) in female flowers. In the male flower, the main amino acid was glutamine, followed by asparagine and proline, whereas in the female nectar, asparagine was the main amino acid, followed by glutamic acid and glutamine. Idesia polycarpa blooms after the blooming period of a major honey plant, Robinia pseudoacacia, and its nectar volume and nectar characteristics, such as free sugar content and amino acid content, make it a viable honey plant.

본 연구는 유망 밀원수종인 이나무를 대상으로 객관적인 밀원가치를 평가하기 위해 화밀분비량, 유리당 및 유리아미노산 함량을 분석하였다. 이나무는 암수딴그루로 수꽃이 암꽃보다 약 4일정도 빨리 개화하였고, 개화시기는 5월 14일부터 5월 30일까지 약 17일간 개화하는 것으로 조사되었다. 화밀분비 패턴을 조사한 결과 수꽃은 개화 3일차에 5.0 ± 2.5μL로 가장 높았고, 암꽃은 개화 2일차에 1.1 ± 0.4 μL로 가장 많이 분비되었다. 개화기간 동안 분비된 총 화밀량은 수꽃 9.7 ± 2.9 μL, 암꽃 1.7 ± 0.5 μL로 조사되었으며, 건조화밀량은 수꽃 2.2 ± 0.6 μL, 암꽃 0.8 ± 0.3 μL을 나타내어 암수 간 유의한 차이가 인정되었다. 화밀 내 유리당 함량은 수꽃 54.6 ± 15.4 ㎍/μL, 암꽃 20.5 ± 4.9 ㎍/μL으로 조사되었으며, 꽃 하나당 당 함량을 산출한 결과 수꽃 170.7 ± 15.4 ㎍, 암꽃 24.9 ± 5.5 ㎍으로 수꽃이 더 높음을 알 수 있었다. 아미노산 함량을 분석한 결과 수꽃은 19개 아미노산에서 20.4 ± 3.9 mg/L, 암꽃은 11개 아미노산에서 3.2 ± 0.1 mg/L가 검출되었으며, 수꽃의 경우 glutamine, asparagine, proline 순으로 높게 나타난 반면, 암꽃 화밀에서는 asparagine, glutamic acid, glutamine 순으로 높게 조사되어 차이를 나타냈다. 이나무는 주요 밀원수종인 아까시나무의 개화 종료 후에 개화하고, 개화기간이 길며, 화밀 분비량과 화밀 내 유리당 및 아미노산 함량 등 화밀 특성을 고려할 때 밀원수종으로서 활용 가능한 것으로 판단된다.

Keywords

References

  1. Aizen, M. and Basilio, A. 1998. Sex differential nectar secretion in Protandrous Alstroemeria aurea (Alstroemeriaceae): is production altered by pollen removal and receipt? American Journal of Botany 85(2): 245-252. https://doi.org/10.2307/2446312
  2. Alaux, C., Ducloz, F., Crauser, D., and Le Conte, Y. 2010. Diet effects on honeybee immunocompetence. Biology Letters 6(4): 562-565. https://doi.org/10.1098/rsbl.2009.0986
  3. Baek, S., Kim, D., Lee, C., Kho, Y. and Lee, C. 2006. Idescarpin isolated from the fruits of Idesia polycarpa inhibits melanin biosynthesis. Journal of Microbiology and Biotechnology 16(5): 667-672.
  4. Baker, H.G. and Baker, I. 1982. Chemical constituents of nectar in relation to pollination mechanism and phylogeny. pp. 131-171. In : Nitecki, M.H, (Ed.): Biochemical aspects of evolutionary biology. University of Chicago Press. Chicago, U.S.A.
  5. Baker, H.G. and Baker, I. 1983. Floral nectar sugar constituents in relation to pollinator type. pp. 117-141. In : C.E. Jones & R.J. Little (Eds.), Handbook of experimental pollination biology. Van Nostrand Reinhold. New York. USA.
  6. Brodschneider, R. and Crailsheim, K. 2010. Nutrition and health in honey bees. Apidologie 41(3): 278-294. https://doi.org/10.1051/apido/2010012
  7. Burquez, A. and Corbet, S.A. 1998. Dynamics of production and exploitation of nectar: lessons from Impatiens glandulifera Royle. pp. 130-152. In : B. Bahadur (Ed.), Nectary: Biology: Structure, Function and Utilization. Vedams Books International. New Delhi, India.
  8. Chou, C.-J., Lin, L.-C., Tsai, W.-J., Hsu, S.-Y. and Ho, L.-K. 1997. Phenyl-β-D-glucopyranoside derivatives from the fruits of Idesia polycarpa. Journal of Natural Products 60(4): 375-377. https://doi.org/10.1021/np960335n
  9. Corbet, S.A., Willmer, P.G., Beament, J.W.L., Unwin, D.M. and Prys-Jones, O.E. 1979. Post-secretory determinants of sugar concentration in nectar. Plant Cell Environment 4(2): 293-308.
  10. de Groot, A.P. 1953. Protein and amino acid requirements of the honeybee Apis mellifera. Physiologia Comparata et Oecologia 3: 1-83.
  11. Greco, C.F., Holland, D. and Kevan, P.G. 1996. Foraging behaviour of honey bees (Apis mellifera L.) on staghorn sumac [Rhus Hirta Sudworth (ex-Typhina L.)] differences and diocey. Canadian Entomologist 128(3): 355-366. https://doi.org/10.4039/ent128355-3
  12. Guo, H., Shen, Q.-W. and Hu, Y.-C. 2012. Quality analysis of Idesia polycarpa maxim seed oil. Modern Food Science and Technology 28(3): 345-347. https://doi.org/10.3969/j.issn.1673-9078.2012.03.027
  13. Han, J. and Kim, S.H. 2008. Flowering and nectar secretion characteristics of honey plant, Hovenia dulcis var. koreana Nakai. Journal of Apiculture 23(3): 199-205.
  14. Han, J., Kang, M.S., Kim, S.H., Lee, G.Y. and Baik, E.S. 2009. Flowering, honeybee visiting and nectar secretion characteristics of Robinia pseudoacacia L. in Suwon, Gyeonggi Province. Journal of Apiculture 24(3): 147-152.
  15. Heil, M. 2011. Nectar: generation, regulation and ecological functions. Trends in Plant Science 16(4): 191-200. https://doi.org/10.1016/j.tplants.2011.01.003
  16. Hwang, J.H., Moon, S.A., Lee, C.H., Byun, M.R., Kim, A.R., Sung, M.K., Park, H.-J., Hwang, E.S., Sung, S.H. and Hong, J.-H. 2012. Idesolide inhibits the adipogenic differentiation of mesenchymal cells through the suppression of nitric oxide production. European Journal of Pharmacology 685(1-3): 218-223 https://doi.org/10.1016/j.ejphar.2012.04.018
  17. Jakobsen, H.B. and Kristjansson, K. 1994. Influence of temperature and floret age on nectar secretion in Trifolium repens L. Annals of Botany 74(4): 327-334. https://doi.org/10.1006/anbo.1994.1125
  18. Jang, J.W. 2008. A Study on honey plants in Korea (The kind of honey plants in Korea and Around a former scanning electron microscope form structure of the pollen). (Dissertation). Daegu. Department of Natural Resources, Daegu University.
  19. Jung, M.H., Yoo, J.M., Kang, Y.J., Lee, H.W., Kim, S.H., Sung, S.H., Lee, Y.J., Choi, I. and Kim, T.J. 2010. Idesolide, an isolate of Idesia polycarpa, inhibits apoptosis through induction of intracellular heat shock protein 70 in C2C12 muscle cells. Biological and Pharmaceutical Bulletin 33(6): 1063-1066. https://doi.org/10.1248/bpb.33.1063
  20. Khan, K.A., Ahmad, K.J., Razzaq, A., Shafiqe, M., Abbasi, K.H., Saleem, M. and Ullah, M.A. 2012. Pollination effect of honey bees, Apis mellifera L. (Hymenoptera: Apidae) on apple fruit development and its weight. Persian Gulf Crop Protection 1(2): 1-5.
  21. Kim, S.H., Jang, Y.P., Sung, S.H. and Kim, Y.C. 2007. Inhibitory activity of phenolic glycosides from the fruits of Idesia polycarpa on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Planta Medica 73(2): 167-169. https://doi.org/10.1055/s-2006-951771
  22. Kim, M.S., Kim, S.H. Han, J. and Kim, J.S. 2012. Analysis of secretion quantity and sugar composition of nectar from Tilia amurensis Rupr. Journal of Apiculture 27(1): 79-85.
  23. Kim, M.S., Kim, S.H., Song, J.H. and Kim, H. 2013. Honeybee visiting and secreted nectar characteristics of Tilia insularis Nakai and relation with meteorologic traits. Journal of Apiculture 28(5): 331-337.
  24. Kim, M.S., Kim, S.H. Song, J.H. and Kim, H.S. 2014. Analysis of secreted nectar volume, sugar and amino acid content in male and female flower of Evodia daniellii Hemsl. Journal of Korean Forest Society 103(1): 43-50. https://doi.org/10.14578/JKFS.2014.103.1.43
  25. Kim, S., Lee, A., Kang, D. Kwon, H.W., Park, Y.K. and Kim, M.S. 2017. Analysis of floral nectar characteristics of Korean and Chinses hawthorns (Crataegus pinnatifida Bunge). Journal of Apicultural Research 57(1): 119-128. https://doi.org/10.1080/00218839.2017.1357942
  26. Kim, S.H., Lee, A., Kwon, H.Y., Lee, W. and Kim, M.S. 2017. Analysis of flowering and nectar characteristics of major four chestnut cultivars (Castanea spp.). Journal of Apiculture 32(3): 237-246. https://doi.org/10.17519/apiculture.2017.09.32.3.237
  27. Kim, T.W. and Lee, Y.M. 1989. The state and propagation plans of honey plants in Korea. Journal of Apiculture 4(1): 9-18.
  28. Klinkhamer, P.G.L. and de Jong. T.J. 1990. Effects of plant size, plant density and sex differential nectar reward on pollinator visitation in the protandrous echium vulgare (Boraginaceae). Oikos 57(3): 399-405. https://doi.org/10.2307/3565970
  29. Korea National Arboretum (KNA). 2020. http://www.nature.go.kr/kbi/plant/pilbk/selectPlantPilbkDtl.do?plantPilbkNo=39619
  30. Lee, M., Lee, H.H., Lee, J.K., Ye, S.K., Kim, S.H. and Sung, S.H. 2013. Anti-adipogenic activity of compounds isolated from Idesia polycarpa on 3T3-L1 cells. Bioorganic & Medicinal Chemistry Letters 23(11): 3170-3174. https://doi.org/10.1016/j.bmcl.2013.04.011
  31. Liu, H., Ma, J. and Li, H. 2019. Transcriptomic and micro-structural analyses in Liriodendron tulipifera Linn. reveal candidate genes involved in nectary development and nectar secretion. BMC Plant Biology 2019(19): 531. https://doi.org/10.1186/s12870-019-2140-0.
  32. Luttge, U. 2013. Green nectaries: the role of photosynthesis in secretion. Botanical Journal 173(1): 1-11.
  33. Neupane, K. and Thapa, R. 2005. Pollen collection and brood production by honeybees (Apis mellifera L.) under Chitwan condition of Nepal. Journal of the Institute of Agriculture and Animal Science 26(2005): 143-148. https://doi.org/10.3126/jiaas.v26i0.667.
  34. Nicolson, S., Nepi, M. and Pacini, E. 2007. Nectaries and nectar: Nectar production and presentation. Springer, Dordrecht, Netherlands, pp. 167-214.
  35. Ollerton, J. 2008. A review of: Ecology and evolution of flowers. Systematic Biology 57(3): 516-517. https://doi.org/10.1080/10635150802208798
  36. Pacini, E., Nepi, M. and Vesprini, J.L. 2003. Nectar biodiversity: A short review. Plant Systematics and Evolution 238(1): 7-21. https://doi.org/10.1007/s00606-002-0277-y
  37. Pacini, E. and Nepi, M. 2014. Effect of pistil age on pollen tube growth, fruit development and seed set in Cucurbita pepo L.. Acta Societatis Botanicorum Poloniae 70(3): 165-172. https://doi.org/10.5586/asbp.2001.021
  38. Ryu, J. and Jang, J. 2008. Newly found honeyplants in Korea. Journal of Apiculture 23(3): 221-228.
  39. Schmehl, D.R., Teal, P.E.A., Frazier, J.L., Grozinger, C.M. 2014. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). Journal of Insect Physiology 71: 177-190. https://doi.org/10.1016/j.jinsphys.2014.10.002
  40. Schmidt, J.O., Thoenes, S.C. and Levin, M.D. 1987. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources, Annals of the Entomological Society of America 80(2): 176-183. https://doi.org/10.1093/aesa/80.2.176
  41. Witt. T., Jurgens, A., Geyer, R. and Gottsberger, G. 1999. Nectar dynamics and sugar composition in flowers of Silene and Saponaria sepcies (Caryophyllaceae). Plant Biology 1(3): 334-345. https://doi.org/10.1111/j.1438-8677.1999.tb00261.x
  42. Yang, F.-X., Su, Y.-Q., Li, X.-H., Zhang, Q. and Sun, R.-C. 2009. Preparation of biodiesel from Idesia polycarpa var. vestita fruit oil, Industrial Crops and Products 29(2-3): 622-628. https://doi.org/10.1016/j.indcrop.2008.12.004
  43. Ye, Y., Tang, X.-S., Chen, F. and Tang, L. 2014. Optimization of phenolics extracted from Idesia polycarpa defatted fruit residue and its antioxidant and depigmenting activity in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine. pp. 12.