DOI QR코드

DOI QR Code

MULTI-PARAMETER TIKHONOV REGULARIZATION PROBLEM WITH MULTIPLE RIGHT HAND SIDES

  • Oh, SeYoung (Department of Mathematics Chungnam National University) ;
  • Kwon, SunJoo (Innovation Center of Engineering Education Chungnam National University)
  • Received : 2020.08.04
  • Accepted : 2020.11.03
  • Published : 2020.11.15

Abstract

This study shows that image deblurring problems can be transformed into the multi-parameter Tikhonov type with multiple right hand sides. Also, this paper proposes the extension of the global generalized cross validation to obtain an appropriate choice of the regularization parameters for this problem. The experimental results of using the preconditioned Gl-CGLS algorithm were analyzed.

Keywords

References

  1. C. Brezinski, M. Redivo-Zaglia, G. Rodriguez, and S. Seatzu, Multi-parameter regularization techniques for ill-conditioned linear systems, Numer. Math., 94 (2003), 203-228. https://doi.org/10.1007/s00211-002-0435-8
  2. Z. Chen, Y. Lu, Y. Xu, and H. Yang, Multi-parameter Tikhonov regularization for ill-posed operator equations, Journal of Computational Mathematics, 26, (2008), 37-55.
  3. J. Chung, M. I. Espanol, and T. Nguyen, Optimal regularization parameters for general-form Tikhonov regularization, Inverse Problems 33 (2014), https://www.researchgate.net/publication/263773804
  4. P. C. Hansen, Deblurring Images Matrices, Spectra, and Filtering, SIAM, 2006.
  5. K. Ito, B. Jin, and T. Takeuchi, Multi-Parameter Tikhonov Regularization, https://arxiv.org/abs/1102.1173.
  6. S. Lu and S. V. Pereverzev, Multi-parameter regularization and its numerical realization, Numer. Math., 118 (2011), 1-31. https://doi.org/10.1007/s00211-010-0318-3
  7. S. Y. Oh, S. J. Kwon, and J. H. Yun, A method for structured linear total least norm on blind deconvolution problem, Journal of Applied Mathematics and Computing, 22 (2006), 373-385. https://doi.org/10.1007/BF02896486
  8. S. Y. Oh, S. J. Kwon, and J. H. Yun, Image restoration by the global conjugate gradient least squares method, J. Appl. Math. & Informatics, 31 (2013), 353-363. https://doi.org/10.14317/jami.2013.353
  9. S. Y. Oh, and S. J. Kwon, Preconditioned Gl-CGLS method using regularization parameters chosen from the global generalized cross validation, J. of Chungcheong Math. Soc., 27 (2014), 675 -688. https://doi.org/10.14403/jcms.2014.27.4.675
  10. Z. Wang, Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters, Journal of Computational and Applied Mathematics, 236 (2012), 1815-1832. https://doi.org/10.1016/j.cam.2011.10.014