DOI QR코드

DOI QR Code

Modified Weighted Filter by Standard Deviation in S&P Noise Environments

S&P 잡음 환경에서 표준편차를 이용한 변형된 가중치 필터

  • Baek, Ji-Hyeon (Dept. of Control and Instrumentation Eng., Pukyong National University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyong National University)
  • Received : 2019.12.24
  • Accepted : 2020.01.31
  • Published : 2020.04.30

Abstract

With the advent of the Fourth Industrial Revolution, many new technologies are being utilized. In particular, video signals are used in various fields. However, when transmitting and receiving video signals, salt and pepper noise and additive white Gaussian noise (AWGN) occur for multiple reasons. Failure to remove such noise when performing image processing can cause problems. Generally, filters such as CWMF, MF, and AMF remove noise. However, these filters perform somewhat poorly in the high-density noise domain and cause smoothing, resulting in slightly lower retention of the edge components. In this paper, we propose an algorithm by effectively eliminating salt and pepper noise using a modified weight filter using standard deviation. In order to prove the noise reduction performance of the proposed algorithm, we compared it with the existing algorithm using PSNR and magnified images.

최근 4차산업 혁명의 시대가 도래하면서 새로운 기술들이 많이 구현되고 있는 추세이다. 그 중 영상신호는 다양한 분야에서 활용되어 지고 있다. 하지만 영상신호를 송,수신할 때 다양한 이유로 잡음이 발생하게 되며 Salt and Pepper 잡음과 AWGN이 대표적이다. 영상처리를 수행 할 때 잡음을 제거하지 않고 처리하게 되면 오류의 전파라는 문제점을 야기할 수 있다. 일반적으로 잡음을 제거하는 방법으로 CWMF, MF, AMF 등이 있지만 이러한 필터들의 경우 고밀도 잡음 영역에서 다소 미흡한 성능을 보이며, 스무딩 현상으로 인해 에지 성분의 보존률도 다소 떨어진다. 본 연구에서는 표준편차를 이용한 변형된 가중치 필터를 이용하여 Salt and Pepper잡음을 효과적으로 제거하는 알고리즘을 제안한다. 제안한 알고리즘의 잡음 제거 성능을 입증하기 위해 PSNR과 확대영상을 사용하여 기존의 알고리즘과 비교하였다.

Keywords

References

  1. A. Sindhu, and V. Radha, "A Novel Histogram Equalization Based Adaptive Center Weighted Median Filter for De-noising Positron Emission Tomography (PET) Scan Images," International Conference on Communication and Electronics System (ICCES), India: Coimbatore, pp. 909-914, 2018.
  2. S. M. Tondare, and N. S. Tekale, "An efficient algorithm for removal of impulse noise in color image through efficient modified decision based unsymmetric trimmed median filter," International Advance Computing Conference (IACC), India: Banglore, pp. 476-480, 2015.
  3. K. Aiswarya, V. Jayaraj, and D. Ebenezer, "A New and Efficient Algorithm for the Removal of High Density Salt and Pepper Noise in Images and Videos," International Conference on Computer Modeling and Simulation, China: Sanya, Hainan, pp. 409-413, 2010.
  4. A. Narendra Babu, "Enhanced Filter based access control for web based cloud," Asia-pacific Journal of Convergent Research Interchange, HSST, vol. 2, no. 2, pp. 43-50, Jun. 2016. https://doi.org/10.21742/apjcri.2016.06.06
  5. S. I. Kwon, and N. H. Kim, "A Study on Salt & Pepper Noise Removal using the Pixel Distribution of Local Mask," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 9, pp. 2167-2172, Sep. 2015. https://doi.org/10.6109/jkiice.2015.19.9.2167
  6. S. I. Kwon, and N. H. Kim, "A Study on Multiple Filter for Mixed Noise Removal," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 11, pp. 2029-2036, Nov. 2017. https://doi.org/10.6109/jkiice.2017.21.11.2029
  7. S. W. Hong, and N. H. Kim, "A Study on Removal of Salt and Pepper Noise using Deformable Masks Depending on the Noise Density," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 9, pp. 2173-2179, Sep. 2015. https://doi.org/10.6109/jkiice.2015.19.9.2173
  8. D. Chowdhury, S. Panda, and S. Dutta, "Eradication of Salt and Pepper Noise from a Tumorous MRI image using SNPRB Filter," International Conference on OptoElectronics and Applied Optics, India: Kolkata, Mar. 2019.