DOI QR코드

DOI QR Code

Recent developments of manganese-aluminium as rare-earth-free magnets

  • 투고 : 2020.04.13
  • 심사 : 2020.12.18
  • 발행 : 2020.12.25

초록

This article reviews findings and progresses in the past decade on manganese-aluminium (MnAl) based magnets as the interest has been revived to fulfill their potential as commercial magnets. The challenges in developments of these rare-earth-free magnets are to acquire a high remanence and coercivity from the ferromagnetic τ-phase in MnAl alloys. To this end, the phase transformation to this τ-MnAl with L10 body centered tetragonal structure has been promoted by a variety of methods and a few percents of carbon (C) is often added to prevent the phase decomposition. Magnetization and coercivity are not only influenced by the phase composition but also the microstructure. The fabrication processes and factors affecting the phase and microstructure are therefore covered. Finally, the productions of bulk MnAl magnets are addressed.

키워드

과제정보

This writing of this article is supported by Thailand Excellent Center in Physics under Grant number ThEP-60-PIP-WU3.

참고문헌

  1. Anand, K., Pulikkotil, J.J. and Auluck, S. (2014), "Study of ferromagnetic instability in τ-MnAl, using firstprinciples", J. Alloys Compd., 601, 234-237. http://dx.doi.org/10.1016/j.jallcom.2014.01.251
  2. Arapan, S., Nieves, P., Cuesta-Lopez, S., Gusenbauer, M., Oezelt, H., Schrefl, T., Delczeg-Czirjak, E.K., Herper, H.C. and Eriksson, O. (2019), "Influence of antiphase boundary of the MnAl τ-phase on the energy product", Phys. Rev. Mater., 3, 064412. https://doi.org/10.1103/PhysRevMaterials.3.064412
  3. Bance, S., Bittner, F., Woodcock, T.G., Schultz, L. and Schrefl, T. (2017), "Role of twin and anti-phase defects in MnAl permanent magnets", Acta Mater., 131, 48-56. https://doi.org/10.1016/j.actamat.2017.04.004
  4. Bittner, F., Freudenberger, J., Schultz, L. and Woodcock, T.G. (2017a), "The impact of dislocations on coercivity in L10-MnAl", J. Alloys Compd., 704, 528-536. https://doi.org/10.1016/j.jallcom.2017.02.028
  5. Bittner, F., Schultz, L. and Woodcock, T.G. (2017b), "The role of the interface distribution in the decomposition of metastable L10-Mn54Al46", J. Alloys Compd., 727, 1095-1099. https://doi.org/10.1016/j.jallcom.2017.08.197
  6. Charoensuk, T., Saetang, P., Ruttanapun, C., Phrompet, C., Pinitsoontorn, S. and Sirisathitkul, C. (2020), "Ferromagnetism of manganese-aluminium alloyed with 0-3% carbon from direct induction melting and subsequent annealing", Rom. Rep. Phys., 72, 507.
  7. Chaturvedi, A., Yaqub, R. and Baker, I. (2014a), "A comparison of τ-MnAl particulates produced via different routes", J. Phys.: Condens. Matter., 26, 064201. https://doi.org/10.1088/0953-8984/26/6/064201
  8. Chaturvedi, A., Yaqub, R. and Baker, I. (2014b), "Microstructure and magnetic properties of bulk nanocrystalline MnAl", Metals, 4, 20-27. https://doi:10.3390/met4010020
  9. Crisan, A.D., Vasiliu, F., Nicula, R., Bartha, C., Mercioniu, I. and Crisan, O. (2018), "Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys", Mater. Charact., 140, 1-8. https://doi.org/10.1016/j.matchar.2018.03.034
  10. Cui, J., Kramer, M., Zhou, L., Liu, F., Gabay, A., Hadjipanayis, G., Balasubramanian, B. and Sellmyer, D. (2018), "Current progress and future challenges in rare-earth-free permanent magnets", Acta Mater., 158, 118-137. https://doi.org/10.1016/j.actamat.2018.07.049
  11. Fang, H., Kontos, S., A ngstrom, J., Cedervall, J., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2016), "Directly obtained τ-phase MnAl, a high performance magnetic material for permanent magnets", J. Solid State Chem., 237, 300-306. https://doi.org/10.1016/j.jssc.2016.02.031
  12. Fang, H., Cedervall, J., Casado, F.J.M., Matej, Z., Bednarcik, J., A ngstrom, J., Berastegui, P. and Sahlberg, M. (2017), "Insights into formation and stability of τ-MnAlZx (Z ¼ C and B)", J. Alloys Compd., 692, 198-203. http://dx.doi.org/10.1016/j.jallcom.2016.09.047
  13. Fang, H., Cedervall, J., Hedlund, D., Shafeie, S., Deledda, S., Olsson, F., Fieandt, L.V., Bednarcik, J., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2018), "Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl", Sci. Rep., 8, 2525. https://doi.org/10.1038/s41598-018-20606-8
  14. Gabay, A.M. and Hadjipanayis, G.C. (2015), "Application of mechanochemical synthesis to manufacturing of permanent magnets", JOM, 67, 1329-1335. https://doi.org/10.1007/s11837-015-1426-4
  15. Genc, A.M., Acar, O., Turan, S., Kalay, I., Savaci, U. and Kalay, Y.E. (2019), "Investigation of phase selection hierarchy in Mn-Al alloys", Intermetallics, 115, 106617. https://doi.org/10.1016/j.intermet.2019.106617
  16. Geng, Y., Lucis, M.J., Rasmussen, P. and Shield, J.E. (2015), "Phase transformation and magnetic properties of rapidly solidified Mn-Al-C alloys modified with Zr", J. Appl. Phys., 118, 033905. https://doi.org/10.1063/1.4927289
  17. Han, K.H., Lee, C.T. and Choo, W.K. (1993), "On the position of carbon atom in the τ‐phase of carbon‐doped Mn‐Al permanent magnets", Phys. Stat. Solidi A, 136, 21-28. https://doi.org/10.1002/pssa.2211360103
  18. Hirosawa, S., Nishino, M. and Miyashita, S. (2017), "Perspectives for high-performance permanent magnets: Applications, coercivity, and new materials", Adv. Nat. Sci: Nanosci. Nanotechnol., 8, 013002. https://doi.org/10.1088/2043-6254/aa597c
  19. Janotova, I., Svec Sr., P., Svec, P., Matko, I., Janickovic, D., Zigo, J., Mihalkovic, M., Marcin, J. and Skorvanek, I. (2017), "Phase analysis and structure of rapidly quenched Al-Mn systems", J. Alloys Compounds, 707, 137-141. https://doi.org/10.1016/j.jallcom.2016.11.171
  20. Janotova, I., Svec Sr., P., Svec, P., Matko, I., Janickovic, D., Kunca, B., Marcin, J. and Skorvanek, I. (2018), "Formation of magnetic phases in rapidly quenched Mn-Based systems", J. Alloys Compounds, 749, 128-133. https://doi.org/10.1016/j.jallcom.2018.03.208
  21. Jia, Y.X., Wu, Y.Y., Zhao, S., Wang, J.M. and Jiang, C.B. (2018), "Relation between solidification microstructure and coercivity in MnAl permanent-magnet alloys", Intermetallics, 96, 41-48. https://doi.org/10.1016/j.intermet.2018.02.011
  22. Jian, H., Skokov, K.P. and Gutfleisch, O. (2015), "Microstructure and magnetic properties of Mn-Al-C alloy powders prepared by ball milling", J. Alloys Compounds, 622, 524-528. https://doi.org/10.1016/j.jallcom.2014.10.138
  23. Jimenez-Villacorta, F., Marion, J.L., Oldham, J.T., Daniil, M., Willard, M.A. and Lewis, L.H. (2014), "Magnetism-structure correlations during the ε→τ transformation in rapidly-solidified MnAl nanostructured alloys", Metals, 4, 8-19. https://doi.org/10.3390/met4010008
  24. Kinemuchi, Y., Fujita, A. and Ozaki, K. (2016), "High-pressure synthesis of L10 MnAl with nearstoichiometric composition", Dalton Trans., 45, 10936. https://doi.org/10.1039/c6dt00947f
  25. Kobayashi, R., Mitsui, Y., Umetsu, R.Y., Takahashi, K., Mizuguchi, M. and Koyama, K. (2019), "Magneticfield-induced enhancement of phase transformation in ferromagnetic τ-Mn-Al", J. Japan Inst. Met. Mater. 83, 181-185. https://doi.org/10.2320/jinstmet.J2018057
  26. Kono, H. (1958), "On the ferromagnetic phase in manganese-aluminum system", J. Phys. Soc. Japan, 13, 1444-1451. https://doi.org/10.1143/JPSJ.13.1444
  27. Kontos, S., Fang, H.L., Li, J.H., Delczeg-Czirjak, E.K., Shafeie, S., Svedlindh, P., Sahlberg, M. and Gunnarsson, K. (2019), "Measured and calculated properties of B-doped τ-phase MnAl: A rare earth free permanent magnet", J. Magn. Magn. Mater., 474, 591-598. https://doi.org/10.1016/j.jmmm.2018.11.006
  28. Kovacs, A., Fischbacher, J., Gusenbauer, M., Oezelt, H., Herper, H.C., Vekilova, O.Y., Nieves, P., Arapan, S. and Schref, T. (2020), "Computational design of rare-earth reduced permanent magnets", Engineering, 6, 148-153. https://doi.org/10.1016/j.eng.2019.11.006
  29. Law, J.Y., Rial, J., Villanueva, M., Lopez, N., Camarero, J., Marshall, L.G., Blazquez, J.S., Borrego, J.M., Franco, V., Condec, A., Lewis, L.H. and Bolleroa, A. (2017), "Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles", J. Alloys Compounds, 712, 373-378. https://doi.org/10.1016/j.jallcom.2017.04.038
  30. Lee, J.G., Pu, L., Choi, C.J. and Dong, X.L. (2010), "Synthesis of Mn-Al alloy nanoparticles by plasma arc discharge", Thin Solid Films, 519, 81-85. https://doi.org/10.1016/j.tsf.2010.07.063
  31. Lee, J.G., Wang, X.L., Zhang, Z.D. and Choi, C.J. (2011), "Effect of mechanical milling and heat treatment on the structure and magnetic properties of gas atomized Mn-Al alloy powders", Thin Solid Films, 519, 8312-8316. http://dx.doi.org/10.1016/j.tsf.2011.03.094
  32. Li, D., Pan, D., Li, S. and Zhang, Z.D. (2016), "Recent developments of rare-earth-free hard-magnetic materials", Sci. China: Phys. Mech. Astron., 59, 617501. https://doi.org/10.1007/s11433-015-5760-x
  33. Liu, Z.W., Chen, C., Zheng, Z.G., Tan, B.H. and Ramanujan, R.V. (2012), "Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements", J. Mater. Sci., 47, 2333-2338. https://doi.org/10.1007/s10853-011-6049-8
  34. Liu, Z.W., Su, K.P., Cheng, Y.T. and Ramanujan, R.V. (2015), "Structure and properties evolutions for hard magnetic MnAl and MnGa based alloys prepared by melt spinning or mechanical milling", Mater. Sci. Eng. Adv. Res., 1(1), 12-19. https://doi.org/10.24218/msear.2015.03
  35. Lu, W., Niu, J., Wang, T., Xia, K., Xiang, Z., Song, Y., Mi, Z., Zhang, W., Tian, W. and Yan, Y. (2016a), "Phase transformation kinetics and microstructural evolution of MnAl permanent magnet alloys", J. Alloys Compounds, 685, 992-996. http://dx.doi.org/10.1016/j.jallcom.2016.06.285
  36. Lu, W., Niu, J., Wang, T., Xia, K., Xiang, Z., Song, Y., Zhang, H., Yoshimura, S. and Saito, H. (2016b), "Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization", J. Alloys Compounds, 675, 163-167. http://dx.doi.org/10.1016/j.jallcom.2016.03.098
  37. Madugundo, R., Koylu-Alkan, O. and Hadjipanayis, G.C. (2016), "Bulk Mn-Al-C permanent magnets prepared by various techniques", AIP Adv., 6, 056009. https://doi.org/10.1063/1.4943242
  38. Manchanda, P., Kashyap, A., Shield, J.E., Lewis, L.H. and Skomski, R. (2014), "Magnetic properties of Fedoped MnAl", J. Magn. Magn. Mater., 365, 88-92. https://doi.org/10.1016/j.jmmm.2014.04.007
  39. Marshall, L.G., McDonald, I.J. and Lewis, L.H. (2016), "Quantification of the strain induced promotion of τMnAl via cryogenic milling", J. Magn. Magn. Mater., 404, 215-220. https://doi.org/10.1016/j.jmmm.2015.12.006
  40. Mitsui, Y., Takanaga, Y., Kobayashi, R. and Koyama, K. (2020), "Effect of carbon addition on the phase stability of hcp-Mn-Al", Phys. B: Cond. Matter, 595, 412379. https://doi.org/10.1016/j.physb.2020.412379
  41. Mix, T., Bittner, F., Müller, K.-H., Schultz, L. and Woodcock, T.G. (2017), "Alloying with a few atomic percent of Ga makes MnAl thermodynamically stable", Acta Mater., 128, 160-165. https://doi.org/10.1016/j.actamat.2017.02.011
  42. Nguyen, V.T., Calvayrac, F., Bajorek, A. and Randrianantoandro, N. (2018), "Mechanical alloying and theoretical studies of MnAl(C) magnets", J. Magn. Magn. Mater., 462(15), 96-104. https://doi.org/10.1016/j.jmmm.2018.05.001
  43. Obi, O., Burns, L., Chen, Y., Fitchorov, T., Kim, S., Hsu, K., Heiman, D., Lewis, L.H. and Harris, V.G. (2014), "Magnetic and structural properties of heat-treated high-moment mechanically alloyed MnAlC powders", J. Alloys Compounds, 582, 598-602. https://doi.org/10.1016/j.jallcom.2013.08.086
  44. Ohtani, T., Kato, N., Kojima, S., Kojima, K., Sakamoto, Y., Konno, I., Tsukahara, M. and Kubo, T. (1977), "Magnetic properties of Mn-Al-C permanent magnet alloys", IEEE Trans. Magn., 13(5), 1328-1330. https://doi.org/10.1109/TMAG.1977.1059574
  45. Palanisamy, D., Srivastava, C., Madras, G. and Chattopadhyay, K. (2017), "High-temperature transformation pathways for metastable ferromagnetic binary Heusler (Al-55 at.%Mn) alloy", J. Mater. Sci., 52, 4109-4119. https://doi.org/10.1007/s10853-016-0673-2
  46. Palanisamy, D., Raabe, D. and Gault, B. (2019), "On the compositional partitioning during phase transformation in a binary ferromagnetic MnAl alloy", Acta Mater., 174, 227-236. https://doi.org/10.1016/j.actamat.2019.05.037
  47. Palmero, E.M., Rial, J., de Vicente, J., Camarero, J., Skarman, B., Vidarsson, H., Larsson, P.O. and Bollero, A. (2018), "Development of permanent magnet MnAlC/ polymer composites and flexible filament for bonding and 3D-printing technologies", Sci. Technol. Adv. Mater., 19, 465-473. https://doi.org/10.1080/14686996.2018.1471321
  48. Park, J.H., Hong, Y.K., Bae, S., Lee, J.J., Jalli, J., Abo, G.S., Neveu, N., Kim, S.G., Choi, C.J. and Lee, J.G. (2010), "Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet", J. Appl. Phys., 107, 09A731. https://doi.org/10.1063/1.3337640
  49. Pasko, A., Lobue, M., Fazakas, E. Varga, L.K. and Mazaleyrat, F. (2014), "Spark plasma sintering of Mn-AlC hard magnets", J. Phys.: Condensed Matter, 26(6), 064203. https://doi.org/10.1088/0953-8984/26/6/064203
  50. Patel, K., Zhang, J.M. and Ren, S.Q. (2018), "Rare-earth-free high energy product manganese-based magnetic materials", Nanoscale, 10, 11701-11718. https://doi.org/10.1039/C8NR01847B
  51. Poudyal, N. and Liu, J.P. (2013), "Advance in nanostructured permanent magnets research", J. Phys. D: Appl. Phys., 46, 043001. https://doi.org/10.1088/0022-3727/46/4/043001
  52. Qian, H.D., Si, P.Z., Choi, C.J., Park, J. and Cho, K.M. (2018a), "Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling", AIP Adv., 8, 056216. https://doi.org/10.1063/1.5007176
  53. Qian, H.D., Si, P.Z., Lim, J.T., Kim, J.W., Park, J.H. and Choi, C.J. (2018b), "Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites", J. Korean Phys. Soc., 73, 1703-1707. https://doi.org/10.3938/jkps.73.1703
  54. Qian, H.D., Si, P.Z., Park, J., Cho, K.M. and Choi, C.J. (2019), "Structure and magnetic properties of nanocrystalline MnAl-C prepared by solid-state reaction and high-pressure compaction", J. Electron. Mater., 48, 1395-1399. https://doi.org/10.1007/s11664-018-06848-2
  55. Radulov, I.A., Popov, V.V.Jr., Koptyug, A., Maccari, F., Kovalevsky, A., Essel, S., Gassmann, J., Skokov, K.P. and Bamberger, M. (2019), "Production of net-shape Mn-Al permanent magnets by electron beam melting", Addit. Manuf., 30, 100787. https://doi.org/10.1016/j.addma.2019.100787
  56. Rial, J., Villanueva, M., Cespedes, E., Lopez, N., Camarero, J., Marshall, L.G., Lewis, L.H. and Bollero, A. (2017), "Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders", J. Phys. D: Appl. Phys., 50, 105004. https://doi.org/10.1088/1361-6463/aa57a1
  57. Saetang, P., Charoensuk, T., Boonyang, U., Jantaratana, P. and Sirisathitkul, C. (2020), "Phase transformations in Mn-Al and Mn-Bi magnets by repeated heat treatment", Trans. Ind. Inst. Met., 73, 929-936. https://doi.org/10.1007/s12666-020-01912-0
  58. Saravanan, P., Hsu, J.H., Vinod, V.T.P., Cernik, M. and Kamat, S.V. (2015a), "Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling", Appl. Phys. Lett., 107, 192407. https://doi.org/10.1063/1.4935861
  59. Saravanan, P., Vinod, V.T.P., Cernik, M., Selvapriya, A., Chakravarty, D. and Kamat, S.V. (2015b), "Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing", J. Magn. Magn. Mater., 374, 427-432. https://doi.org/10.1016/j.jmmm.2014.08.076
  60. Saravanan, P., Hsu, J.H., Vinod, V.T.P., Cernik, M. and Kamat, S.V. (2017), "MWCNT reinforced τ-Mn-Al nanocomposite magnets through spark plasma sintering", J. Alloys Compounds, 695, 364-371. https://doi.org/10.1016/j.jallcom.2016.10.184
  61. Sato, S. and Irie, S. (2019), "Matamagnetic behavior in L10-MnAl synthesized by the post annealing of electrodeposited MnAl powder", AIP Adv., 9, 035015. https://doi.org/10.1063/1.5079929
  62. Sato, S., Irie, S., Nagamine, Y., Miyazaki, T. and Umeda, Y. (2020), "Antiferromagnetism in perfectly ordered-L10-MnAl with stoichiometric composition and its mechanism", Sci. Rep., 10, 12489. https://doi.org/10.1038/s41598-020-69538-2
  63. Shafeie, S., Fang, H.L., Hedlund, D., Nyberg, A., Svedlindh, P., Gunnarsson, K. and Sahlberg, M. (2019), "One step towards MnAl-based permanent magnets: Differences in magnetic, and microstructural properties from an intermediate annealing step during synthesis", J. Solid State Chem., 274, 229-236. https://doi.org/10.1016/j.jssc.2019.03.035
  64. Shao, Z.Y., Zhao, H., Zeng, J.L., Zhang, Y.F., Yang, W.Y., Lai, Y.F., Guo, S., Du, H.L., Wang, C.S., Yang, Y.C. and Yang, J.B. (2017), "One step preparation of pure τ-MnAl phase with high magnetization using strip casting method", AIP Adv., 7, 056213. https://doi.org/10.1063/1.4974277
  65. Shukla, A. and Pelton, A.D. (2009), "Thermodynamic assessment of the Al-Mn and Mg-Al-Mn systems", J. Phase Equilib. Diff., 30, 28-39. https://doi.org/10.1007/s11669-008-9426-5
  66. Si, P.Z., Qian, H.D., Choi, C.J., Park, J., Han, S., Ge, H.L. and Shinde, K.P. (2017), "in situ observation of phase transformation in MnAl(C) magnetic materials", Materials, 10, 1016. https://doi.org/10.3390/ma10091016
  67. Si, P.Z., Park, J., Qian, H.D., Choi, C.J., Li, Y.S. and Ge, H. (2019a), "Enhanced magnetic performance of bulk nanocrystalline MnAl-C prepared by high pressure compaction of gas atomized powder", Bull. Mater. Sci., 42, 95. https://doi.org/10.1007/s12034-019-1768-6
  68. Si, P.Z., Qian, H.D., Wang, X.Y., Yang Y., Park, J.H., Ge, H.L. and Choi, C.J. (2019b), "High-pressure synthesis of high coercivity bulk MnAl-C magnets from melt-spun ribbons", J. Electron. Mater., 42, 794-798. https://doi.org/10.1007/s11664-018-6798-0
  69. Si, P.Z., Lim, J.T., Park, J.H., Lee, H.H., Ge, H.L., Lee, H., Han, S., Kim, H.S. and Choi, C.J. (2020a), "High coercivity in MnAl disc prepared by severe plastic deformation", Phys. Stat. Solidi B, 257, 1900356. https://doi.org/10.1002/pssb.201900356
  70. Si, P.Z., Choi, C.J., Park, J., Ge, H.L. and Du, J. (2020b), "Phase transformation and enhanced coercivity in B-N-doped MnAl nanocrystalline bulk alloys prepared by high pressure torsion", AIP Adv., 10, 015320. https://doi.org/10.1063/1.5130064
  71. Su, K.P., Wang, J., Wang, H.O., Huo, D.X., Li, L.W., Cao, Y.Q. and Liu, Z.W. (2015), "Strain induced coercivity enhancement in Mn51Al46C3 flakes prepared by surfactant-assisted ball milling", J. Alloys Compd., 640, 114-117. https://doi.org/10.1016/j.jallcom.2015.04.040
  72. Su, K.P., Hu, S.L., Wang, H.O., Huang, S., Chen, X.X., Liu, J.J., Huo, D.X., Ma, L. and Liu, Z.W. (2019), "Structural and magnetic properties of Mn50Al46Cu4C3 flakes obtained by surfactant-assisted ball milling", Mater. Res. Exp., 6, 106125. https://doi.org/10.1088/2053-1591/ab4227
  73. Thielsch, J., Bittner, F. and Woodcock, T.G. (2017), "Magnetization reversal processes in hot-extruded τ-MnAl-C", J. Magn. Magn. Mater., 426, 25-31. https://doi.org/10.1016/j.jmmm.2016.11.045
  74. Tyrman, M., Pasko, A., Perriere, L., Etgens, V., Isnard, O. and Mazaleyrat, F. (2017), "Effect of carbon addition on magnetic order in Mn-Al-C alloys", IEEE Trans. Magn., 53, 2101406. https://doi.org/10.1109/TMAG.2017.2710639
  75. Tyrman, M., Ahmim, S., Pasko, A., Etgens, V., Mazaleyrat, F., Quetel-Weben, S., Perriere, L. and Guillot, I. (2018), "Anisotropy of the ferromagnetic L10 phase in the Mn-Al-C alloys induced by high-pressure spark plasma sintering", AIP Adv., 8, 056217. https://doi.org/10.1063/1.5007241
  76. Wang, H.X., Si, P.Z., Jiang, W., Lee, J.G., Choi, C.J., Liu, J.J., Wu, Q., Zhong, M. and Ge, H.L. (2011), "Structural stabilizing effect of Zn substitution on MnAl and its magnetic properties", Open J. Microphys., 1, 19-22. https://doi.org/10.4236/ojm.2011.12003
  77. Wei, J.Z., Song, Z.G., Yang, Y.B., Liu, S.Q., Du, H.L., Han, J.Z., Zhou, D., Wang, C.S., Yang, Y.C., Franz, A., Tobbens, D. and Yang, J.B. (2014), "τ-MnAl with high coercivity and saturation magnetization", AIP Adv., 4, 127113. https://doi.org/10.1063/1.4903773
  78. Xiang, Z., Wang, X., Song, Y.M., Yu, L.Z., Cui, E.B., Den, B.W., Batalu, D. and Lu, W. (2018a), "Effect of cooling rates on the microstructure and magnetic properties of MnAl permanent magnetic alloys", J. Magn. Magn. Mater., 475, 479-483. https://doi.org/10.1016/j.jmmm.2018.12.003
  79. Xiang, Z., Xu, C.F., Wang, T.L., Song, Y.M., Yanga, H.W. and Lu, W. (2018b), "Enhanced magnetization and energy product in isotropic nanocrystalline Mn55Al45 alloys with boron doping", Intermetallics, 101, 13-17. https://doi.org/10.1016/j.intermet.2018.07.003
  80. Xiang, Z., Song, Y.M., Deng, B.W., Cui, E.B., Yu, L.Z. and Lu, W. (2019), "Enhanced formation and improved thermal stability of ferromagnetic τ phase in nanocrystalline Mn55Al45 alloys by Co addition", J. Alloys Compd., 783, 416-422. https://doi.org/10.1016/j.jallcom.2018.12.350
  81. Xiang, Z., Deng, B.W., Zhang, X., Wang, X., Cui, E.B., Yu, L.Z., Song, Y.M. and Lu, W. (2020), "Nanocrystalline MnAlV rare-earth-free permanent magnetic alloys with improved magnetization and thermal stability", Intermetallics, 116, 106638. https://doi.org/10.1016/j.intermet.2019.106638
  82. Yang, Y.C., Ho, W.W., Lin, C., Yang, J.L., Zhou, H.M., Zhu, J., Zeng, X.X., Zhang, B.S. and Jin, L. (1984), "Neutron diffraction study of hard magnetic alloy MnAlC", J. Appl. Phys., 55, 2053-2054. https://doi.org/10.1063/1.333563
  83. Yang, J.B., Yang, W.Y., Shao, Z.Y., Liang, D., Zhao, H., Xia, Y.H. and Yang, Y.B. (2018), "Mn-based permanent magnets", Chin. Phys. B, 27, 117503. https://doi.org/10.1088/1674-1056/27/11/117503
  84. Zhao, S., Wu, Y.Y., Zhang, C., Wang, J.M., Fu, Z.H., Zhang, R.F. and Jiang, C.B. (2018), "Stabilization of τ-phase in carbon-doped MnAl magnetic alloys", J. Alloys Compd., 755, 257-264. https://doi.org/10.1016/j.jallcom.2018.04.318
  85. Zhao, S., Wu, Y.Y., Wang, J.M., Jia, Y.X., Zhang, T.L., Zhang, T.L. and Jiang, C.B. (2019a), "Realization of large coercivity in MnAl permanent-magnet alloys by introducing nanoprecipitates", J. Magn. Magn. Mater., 483, 164-168. https://doi.org/10.1016/j.jmmm.2019.03.103
  86. Zhao, S., Wu, Y.Y., Jiao, Z.Y., Jia, Y.X., Xu, Y.C., Wang, J.M., Zhang, T.L. and Jiang, C.B. (2019b), "Evolution of intrinsic magnetic properties in L1(0) Mn-Al alloys doped with substitutional atoms and correlated mechanism: Experimental and theoretical studies", Phys. Rev. Appl., 11, 064008. https://doi.org/10.1103/PhysRevApplied.11.064008