DOI QR코드

DOI QR Code

COEFFICIENT BOUNDS FOR INVERSE OF FUNCTIONS CONVEX IN ONE DIRECTION

  • Received : 2020.07.08
  • Accepted : 2020.11.19
  • Published : 2020.12.25

Abstract

In this article, we investigate the upper bounds on the coefficients for inverse of functions belongs to certain classes of univalent functions and in particular for the functions convex in one direction. Bounds on the Fekete-Szegö functional and third order Hankel determinant for these classes have also investigated.

Keywords

References

  1. R. M. Ali, Coefficient of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (Second Series) 26 (2003), 63-71.
  2. R. M. Ali, S. K. Lee and M. Obradovic, Sharp bounds for initial coefficients and the second Hankel determinant, Bull. Korean Math. Soc. 57(4) (2020), 839-850. https://doi.org/10.4134/BKMS.B190520
  3. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26(1) (2013), 103-107. https://doi.org/10.1016/j.aml.2012.04.002
  4. D. Bansal, S. Maharana, and J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52(6) (2015), 1139-1148. https://doi.org/10.4134/JKMS.2015.52.6.1139
  5. N. E. Cho, V. Kumar and V. Ravichandran, A survey on coefficient estimates for Caratheodory functions, Appl. Math. E-Notes 19(2019), 370-396.
  6. P. L. Duren, Univalent Functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  7. R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000), 557-560. https://doi.org/10.2307/2589352
  8. M. Fekete and G. Szego, Eine bemerkung uber ungerade schlichten funktionene, J. Lond. Math. Soc. 8 (1933), 85-89.
  9. U. Grenanderand and G. Szego, Toeplitz forms and their application, Univ. of California Press, Berkeley and Los Angeles, 1958.
  10. W. K. Hayman, On second Hankel determinant of mean univalent functions, Proc. London Math. Soc. 18 (1968), 77-94. https://doi.org/10.1112/plms/s3-18.1.77
  11. A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7(2) (2006), 1-5.
  12. G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2007), 922-934. https://doi.org/10.1016/j.jmaa.2006.07.020
  13. F. R. Keogh and E. P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
  14. W. Koepf, On the Fekete-Szego problem for close-to-convex functions II, Arch. Math. 49 (1987), 420-433. https://doi.org/10.1007/BF01194100
  15. J. G. Krzyz, R. J. Libera, and E. J. Zlotkiewicz, Coefficients of inverse of regular starlike functions, Ann. Univ. Marie Curie-Sklodowska Sect. A 33(10) (1979), 103-109.
  16. S. K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), Article 281.
  17. R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(2) (1982), 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
  18. R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc. 87(2) (1983), 251-257. https://doi.org/10.1090/S0002-9939-1983-0681830-8
  19. R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P-II, Proc. Amer. Math. Soc. 92(1)(1984), 58-60. https://doi.org/10.1090/S0002-9939-1984-0749890-4
  20. R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117(4) (1993), 947-950. https://doi.org/10.1090/S0002-9939-1993-1150652-2
  21. K. Lowner, Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises, Math. Ann. 89 (1923), 103-121. https://doi.org/10.1007/BF01448091
  22. A. K. Mishra, J. K. Prajapat, and S. Maharana, Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, (2016), 3: 1160557.
  23. J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.1090/S0002-9947-1976-0422607-9
  24. K. I. Noor, Higher order close-to-convex functions, Math. Japonica 37(1) (1992), 1-8.
  25. S. Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku. Sect.A. 4 (1941), 45-87.
  26. C. Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
  27. S. Ponnusamy, S. K. Sahoo, and H. Yanagihara, Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Anal. 95 (2014), 219-228. https://doi.org/10.1016/j.na.2013.09.009
  28. M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. (2013), Art 42.
  29. R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, Collect. Math. 47 (1982), 309-314.
  30. T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194-202. https://doi.org/10.2969/jmsj/00420194