References
- R. M. Ali, Coefficient of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (Second Series) 26 (2003), 63-71.
- R. M. Ali, S. K. Lee and M. Obradovic, Sharp bounds for initial coefficients and the second Hankel determinant, Bull. Korean Math. Soc. 57(4) (2020), 839-850. https://doi.org/10.4134/BKMS.B190520
- D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26(1) (2013), 103-107. https://doi.org/10.1016/j.aml.2012.04.002
- D. Bansal, S. Maharana, and J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc. 52(6) (2015), 1139-1148. https://doi.org/10.4134/JKMS.2015.52.6.1139
- N. E. Cho, V. Kumar and V. Ravichandran, A survey on coefficient estimates for Caratheodory functions, Appl. Math. E-Notes 19(2019), 370-396.
- P. L. Duren, Univalent Functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly 107 (2000), 557-560. https://doi.org/10.2307/2589352
- M. Fekete and G. Szego, Eine bemerkung uber ungerade schlichten funktionene, J. Lond. Math. Soc. 8 (1933), 85-89.
- U. Grenanderand and G. Szego, Toeplitz forms and their application, Univ. of California Press, Berkeley and Los Angeles, 1958.
- W. K. Hayman, On second Hankel determinant of mean univalent functions, Proc. London Math. Soc. 18 (1968), 77-94. https://doi.org/10.1112/plms/s3-18.1.77
- A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7(2) (2006), 1-5.
- G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2007), 922-934. https://doi.org/10.1016/j.jmaa.2006.07.020
- F. R. Keogh and E. P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8-12. https://doi.org/10.1090/S0002-9939-1969-0232926-9
- W. Koepf, On the Fekete-Szego problem for close-to-convex functions II, Arch. Math. 49 (1987), 420-433. https://doi.org/10.1007/BF01194100
- J. G. Krzyz, R. J. Libera, and E. J. Zlotkiewicz, Coefficients of inverse of regular starlike functions, Ann. Univ. Marie Curie-Sklodowska Sect. A 33(10) (1979), 103-109.
- S. K. Lee, V. Ravichandran, and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), Article 281.
- R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85(2) (1982), 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
- R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc. 87(2) (1983), 251-257. https://doi.org/10.1090/S0002-9939-1983-0681830-8
- R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P-II, Proc. Amer. Math. Soc. 92(1)(1984), 58-60. https://doi.org/10.1090/S0002-9939-1984-0749890-4
- R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117(4) (1993), 947-950. https://doi.org/10.1090/S0002-9939-1993-1150652-2
- K. Lowner, Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises, Math. Ann. 89 (1923), 103-121. https://doi.org/10.1007/BF01448091
- A. K. Mishra, J. K. Prajapat, and S. Maharana, Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, (2016), 3: 1160557.
- J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.1090/S0002-9947-1976-0422607-9
- K. I. Noor, Higher order close-to-convex functions, Math. Japonica 37(1) (1992), 1-8.
- S. Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku. Sect.A. 4 (1941), 45-87.
- C. Pommerenke, On the coefficients and Hankel determinant of univalent functions, J. London Math. Soc. 41 (1966), 111-122. https://doi.org/10.1112/jlms/s1-41.1.111
- S. Ponnusamy, S. K. Sahoo, and H. Yanagihara, Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Anal. 95 (2014), 219-228. https://doi.org/10.1016/j.na.2013.09.009
- M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl. (2013), Art 42.
- R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, Collect. Math. 47 (1982), 309-314.
- T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan 4 (1952), 194-202. https://doi.org/10.2969/jmsj/00420194