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COEFFICIENT BOUNDS FOR INVERSE OF

FUNCTIONS CONVEX IN ONE DIRECTION

Sudhananda Maharana, Jugal Kishore Prajapat,
and Deepak Bansal∗

Abstract. In this article, we investigate the upper bounds on the
coefficients for inverse of functions belongs to certain classes of uni-
valent functions and in particular for the functions convex in one
direction. Bounds on the Fekete-Szegö functional and third order
Hankel determinant for these classes have also investigated.

1. Introduction and Preliminaries

Let H denote the family of all analytic functions in the open unit disk
D := {z ∈ C : |z| < 1} and A denote the class of functions f ∈ H,
having the form

(1) f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ D.

We denote by S, the class of univalent functions in A.
It is well-known that the function f ∈ S of the form (1) has an inverse

f−1, which is analytic in |w| < r0(f) (r0(f) ≥ 1/4). If f ∈ S given by
(1), then

f−1(w) = w + γ2w
2 + γ3w

3 + · · · , |w| < r0(f).(2)

Löwner [21] proved that, if f ∈ S and its inverse is given by (2), then
the sharp estimate

(3) |γn| ≤
Γ(2n+ 1)

Γ(n+ 1)Γ(n+ 2)
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holds. It has been shown that the inverse of the Koebe function k(z) =
z/(1− z)2 provides the best bounds for all |γn| (n = 2, 3, · · · ) in (3) over
all members of S.

Using (1) and (2) with

w = f−1(w) + a2(f−1(w))2 + a3(f−1(w))3 + · · · ,

Libera et al. [17] (see also [18, 19]) obtained the following relationship
between the coefficients of f and f−1 for all f of the form (1):

(4)


γ2 + a2 = 0, γ3 + 2a2γ2 + a3 = 0,
γ4 + a2(γ2

2 + 2γ3) + 3a3γ2 + a4 = 0,
and
γ5 + a2(2γ4 + 2γ2γ3) + a3(3γ3 + 3γ2

2) + 4a4γ2 + a5 = 0.

On the other hand, Krzyz et al. [15] investigated bounds on initial coef-
ficients of inverse of starlike functions and their results were extended by
Kapoor and Mishra [12]. Further, Ali [1] studied sharp bounds on early
coefficients of inverse functions and corresponding Fekete-Szegö func-
tional, when function belongs to the class of strongly starlike functions.

Umezawa [30, Theorem 1] studied that, if function f of the form (1)
be meromorphic in D and satisfying the relation

(5) α > <
(

1 +
zf ′′(z)

f ′(z)

)
> − α

2α− 3
,

where α is an arbitrary number not less than 3/2, then f is analytic
and univalent in D. Moreover, f(z) maps |z| = r for every r < 1 into a
curve which is convex in one direction, and |an| ≤ n for all n. We recall
that a domain D ⊂ C is called convex in the direction ϕ (0 ≤ ϕ < π),
if every line parallel to the line through 0 and eiϕ has a connected or
empty intersection with D. A function f ∈ S is said to be convex in the
direction ϕ , if f(D) is convex in the direction ϕ .

Several special cases of inequality (5) can be drawn by allowing dif-
ferent values of α ≥ 3/2. In particular when α→ 3/2 in (5), the function
f ∈ A satisfying the analytic condition

(6) <
(

1 +
zf ′′(z)

f ′(z)

)
<

3

2
,

is convex in one direction in D. Let the class of all functions f ∈ A
satisfying (6) be denoted by G and G−1 be the class of inverse function
f−1 of functions f ∈ G. Ozaki [25] studied the class G and proved that
functions in G are univalent in D. Singh and Singh [29, Theorem 6]
proved that the functions in G are starlike in D.



Coefficient bounds 783

Furthermore, when α →∞ in (5), the function f ∈ A satisfying the
analytic condition

(7) <
(

1 +
zf ′′(z)

f ′(z)

)
> −1

2
,

is convex in one direction in D. Let the class of all functions f ∈ A
satisfying (7) be denoted by F and F−1 be the class of inverse function
f−1 of functions f ∈ F . Note that the inequality (7) is a consequence of
Kaplan characterization [6, p. 48, Theorem 2.18], therefore functions in
F are also close-to-convex (hence univalent) in D. Recently Ponnusamy
et al. [27] investigated the radius of convexity of partial sums of functions
f ∈ F .

The Hankel determinant of Taylor coefficients of functions f ∈ A of
the form (1), is denoted by Hq,n(f), and is defined by

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣
(a1 = 1; n, q ∈ N = {1, 2, · · · }).

Several researchers including Noonan and Thomas [23], Pommerenke
[26], Hayman [10], Ehrenborg [7], Noor [24] have studied the Hankel
determinant and given some remarkable results, which are useful, for
example, in showing that a function of bounded characteristic in D.

Indeed, H2,1(f) = Λ1(f) is the Fekete-Szegö functional, which have
been studied for various subclasses of S (see e.g. [2, 8, 13, 14, 20]). Re-
cently many authors have studied the problem of calculating the upper
bounds of |H2,2(f)| for various subclasses of A (see e.g. [3, 11, 16]). The
third Hankel determinant H3,1(f) is given by

H3,1(f) =

∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣ = a3(a2a4− a2
3)− a4(a4− a2a3) + a5(a3− a2

2).

Recently, the authors have obtained bounds on |H3,1(f)| for certain
classes of analytic functions (see e.g. [4, 22]). Also, Raza and Malik
[28] have obtained the bounds on |H3,1(f)| for a subclasses of analytic
functions associated with right half of the lemniscate of Bernoulli (x2 +
y2)2 − 2(x2 − y2) = 0.
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In this paper, we examine the upper bounds on the coefficients |γi|
(i = 2, 3, 4, 5), the upper bounds on |H2,1(f)| and |H3,1(f)| for the in-
verse functions f−1 of the form (2), when f belongs to the function
classes G and F , respectively. In order to obtain our main results, we
need the following known results for the class P of Carathéodory func-
tions [6, p.40] that consists of functions p ∈ H with <(p(z)) > 0, having
the form

(8) p(z) = 1 + c1z + c2z
2 + · · · , z ∈ D.

For more details about class P one can refer the survey article [5].

Lemma 1.1. [6, 13, 18] Let the function p ∈ P be given by (8).
Then

(a) |cn| ≤ 2, n ∈ N := {1, 2, · · · }. This inequality is sharp and equality

holds for every function pε(z) =
1 + εz

1− εz
(z ∈ D, |ε| = 1).

(b) max |c2 − λc2
1| = 2 max{1, |2λ− 1|}, for any complex number λ.

Lemma 1.2. [9] Let the function p ∈ P be given by (8). Then

(9) 2c2 = c2
1 + x(4− c2

1)

and

(10) 4c3 = c3
1 + 2(4− c2

1)c1x− c1(4− c2
1)x2 + 2(4− c2

1)(1− |x|2)z,

for some x and z, such that |x| ≤ 1 and |z| ≤ 1.

Lemma 1.3. If p(z) ∈ P be given by (8) and 1/p(z) = 1 +
∞∑
n=1

c∗nz
n,

then

c∗1 = −c1, c∗2 = c2
1 − c2,

c∗3 = 2c1c2 − c3 − c3
1, c∗4 = c4

1 + c2
2 + 2c1c3 − 3c2

1c2 − c4

and |c∗n| ≤ 2, for all n ∈ N.

Note that Lemma 1.3 is a revised form of a known result [18, Lemma
1] and its last statement follows from the observation that both the p
and its reciprocal are in P.
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2. Main Results

Theorem 2.1. Let f ∈ G be of the form (1) and its inverse f−1 be
given by (2). Then

(1) |γ2| ≤
1

2
, |γ3| ≤

1

2
, |γ4| ≤

5

8
, and |γ5| ≤

7

8
.

The equalities in (1) hold for the inverse of function f0(z) = z − z2/2.

Proof. Let g(z) = zf ′(z) be given by

(2) g(z) = z + b2z
2 + b3z

3 + · · ·+ bnz
n + · · · .

Then bn = nan, for n ≥ 2. If f ∈ G, then clearly it follows that

(3)
3

2
− zg′(z)

g(z)
=

1

2
p(z),

where p ∈ P. Substituting (8) and (2) in (3), we obtain

(4)
a2 = −1

4c1, a3 = 1
24(c2

1 − 2c2), a4 = 1
192(6c1c2 − c3

1 − 8c3)
and
a5 = 1

1920(32c1c3 + c4
1 + 12c2

2 − 48c4 − 12c2
1c2).

By using (4) in (4), we estimate

(5)
γ2 = 1

4c1, γ3 = 1
12(c2

1 + c2), γ4 = 1
96(4c3 + 3c3

1 + 7c1c2)
and
γ5 = 1

960(12c4
1 + 46c2

1c2 + 44c1c3 + 14c2
2 + 24c4).

Now by using Lemma 1.1, and triangle inequality in (5), we get the
desired result (1). Finally for equality in (1), the function f0(z) =
z − z2/2 is given by

w = f0(z) = f0(f−1
0 (w))

= f−1
0 (w)− 1

2
(f−1

0 (w))2

= w + (γ2 −
1

2
)w2 + (γ3 − γ2)w3

+(γ4 − γ3 −
1

2
γ2

2)w4 + (γ5 − γ4 − γ2γ3)w5 + · · · .

By equating the coefficients, it gives the equalities in (1), and this com-
pletes the proof of the theorem.
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Theorem 2.2. Let f ∈ G be of the form (1) and its inverse f−1 be
given by (2). Then for any complex number µ, we have

(6) |γ3 − µγ2
2 | ≤

1

6
max

{
1,

3|µ− 2|
2

}
.

The equality in (6) is attained for the inverse of function f0(z) = z−z2/2.

Proof. By using (5), we get

|γ3 − µγ2
2 | =

1

12

∣∣∣∣c2 −
3µ− 4

4
c2

1

∣∣∣∣ .
The result now follows from the application of Lemma 1.1.

If we take µ = 1 in Theorem 2.2, we obtain the following result.

Corollary 2.3. Let f ∈ G be of the form (1) and its inverse f−1 be
given by (2). Then

|γ3 − γ2
2 | ≤

1

4
,

and the equality is attained for the inverse of function f0(z) = z− z2/2.

Theorem 2.4. Let f ∈ G be of the form (1) and its inverse f−1 be
given by (2). Then

(7) |γ2γ3 − γ4| ≤
3

8
and |γ2γ4 − γ2

3 | ≤
1

16
.

The equalities in (7) is attained by the inverse of function f0(z) = z −
z2/2.

Proof. If f ∈ G be of the form (1) and its inverse f−1 be given by (2),
then the coefficients of f−1 are given by (5). Using these coefficients, we
estimate

(8)

|γ2γ3 − γ4| =
1

96

∣∣c3
1 + 5c1c2 + 4c3

∣∣
and

|γ2γ4 − γ2
3 | =

1

1152

∣∣c4
1 + 5c2

1c2 − 8c2
2 + 12c1c3

∣∣ .
By using Lemma 1.2 and (8), we obtain

(9)

|γ2γ3 − γ4| =
1

192

∣∣9c3
1 + (4− c2

1){9c1x− 2c1x
2 + 4(1− |x|2)z}

∣∣
and

|γ2γ4 − γ2
3 | =

1

2304

∣∣9c4
1 + (4− c2

1){9c2
1x− 4x2(4− c2

1)

−6c2
1x

2 + 12c1(1− |x|2)z}
∣∣ .
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As per Lemma 1.1, it is clear that |c1| ≤ 2. Therefore, letting c1 = c, we
may assume without restriction that c ∈ [0, 2]. Hence, applying triangle
inequality with µ = |x|, we obtain

|γ2γ3 − γ4| ≤
1

192

[
9c3+(4−c2){9cµ+2cµ2+4(1−µ2)}

]
:= C(c, µ)

and

|γ2γ4 − γ2
3 | ≤

1

2304

[
9c4+(4−c2){9c2µ+16µ2+2c2µ2+12c(1−µ2)}

]
:= D(c, µ).

Now to prove our results, we need to maximize the values of C and D
over the region Ω = {(c, µ) : 0 ≤ c ≤ 2, 0 ≤ µ ≤ 1}. For this, first
differentiating C with respect to µ and c, we obtain

∂C

∂µ
=

1

192

[
(4− c2)(9c+ 4cµ− 8µ)

]
and

∂C

∂c
=

1

192

[
(27− 27µ− 6µ2)c2 + 8(µ2 − 1)c+ 36µ+ 8µ2

]
.

A critical point of C(c, µ) must satisfy ∂C
∂µ = 0 and ∂C

∂c = 0. The

condition ∂C
∂µ = 0 gives c = ±2 or µ = 9c

4(2−c) . Points (c, µ) satisfying

such conditions are not interior point of Ω. So the maximum cannot be
attained in the interior of Ω. Now to see on the boundary, first taking the
boundary line L1 = {(0, µ) : 0 ≤ µ ≤ 1}, we have C(0, µ) = (1−µ2)/12,
and its maximum on this line is equal to 1/12, which is attained at the
point (0, 0). On the boundary line L2 = {(2, µ) : 0 ≤ µ ≤ 1}, we have
C(2, µ) = 3/8, which is a constant. On the boundary line L3 = {(c, 0) :
0 ≤ c ≤ 2}, we have C(c, 0) = (9c3 − 4c2 + 16)/192, and its maximum
on this line is equal to 3/8, which is attained at the point (2, 0). On
the line L4 = {(c, 1) : 0 ≤ c ≤ 2}, we have C(c, 1) = (22c− c3)/96, and
the maximum on this line is 3/8, which is attained at the point (2, 1).
Comparing these results, we get

max
Ω

C(c, µ) = C(2, µ) = 3/8.

Further, differentiating D with respect to µ and c, we obtain

∂D

∂µ
=

1

2304

[
(4− c2)(9c2 + 4c2µ+ 32µ− 24cµ)

]
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and

∂D

∂c
=

1

2304

[
36c3 − 8c3µ2 − 36c3µ− 36c2

+36c2µ2 + 72cµ− 16cµ2 − 48µ2 + 48
]
.

The condition ∂D
∂µ = 0 gives c = ±2 or µ = − 9c2

4(8−6c+c2)
in Ω. Points

(c, µ) satisfying such conditions are not interior point of Ω. So the
maximum cannot attain in the interior of Ω. Now to see on the boundary,
taking the boundary line L1 = {(0, µ) : 0 ≤ µ ≤ 1}, we have D(0, µ) =
µ2/36, and its maximum on this line is equal to 1/36, which is attained
at the point (0, 1). On the boundary line L2 = {(2, µ) : 0 ≤ µ ≤ 1},
we have D(2, µ) = 1/16, which is a constant. On the boundary line
L3 = {(c, 0) : 0 ≤ c ≤ 2}, we have D(c, 0) = (9c4 − 12c3 + 48c)/2304,
and its maximum on this line is equal to 1/16, which is attained at the
point (2, 0). On the line L4 = {(c, 1) : 0 ≤ c ≤ 2}, we have D(c, 1) =
(−2c4 + 28c2 + 64)/2304, and its maximum on this line is 1/16, which
is attained at the point (2, 1). Comparing these results, we get

max
Ω

D(c, µ) = D(2, µ) = 1/16.

This completes the proof of Theorem 2.4.

Theorem 2.5. Let f ∈ G be of the form (1) and its inverse f−1 be
given by (2). Then

(10) |H3,1(f−1)| ≤ 31

64
.

The equality in (10) is attained by the inverse of function f0(z) = z −
z2/2.

Proof. By using Theorem 2.1, Corollary 2.3, Theorem 2.4 and the
triangle inequality, we get

|H3,1(f−1)| ≤ |γ3||γ2γ4 − γ2
3 |+ |γ4||γ2γ3 − γ4|+ |γ5||γ3 − γ2

2 | =
31

64
.

This completes the proof of Theorem 2.5.

Theorem 2.6. Let f ∈ F be of the form (1) and its inverse f−1 be
given by (2). Then

(11) |γ2| ≤
3

2
, |γ3| ≤

5

2
, |γ4| ≤

35

8
, and |γ5| ≤

63

8
.
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The equalities in (11) hold for the inverse of function f1(z) =
z − z2/2

(1− z)2

and its rotation.

Proof. Let g(z) = zf ′(z), where f ∈ F . Then it is clear that

(12)
zg′(z)

g(z)
=

3

2
p(z)− 1

2
,

where p ∈ P, and g(z) is given by (2). Substituting (8) and (2) in (12),
we get

(13)
a2 = 3

4c1, a3 = 1
8(3c2

1 + 2c2), a4 = 1
64(9c3

1 + 18c1c2 + 8c3)
and
a5 = 3

640

(
16c4 + 32c1c3 + 36c2

1c2 + 12c2
2 + 9c4

1

)
.

Again, by using (4) in (13), we obtain

(14)
γ2 = −3

4c1, γ3 = 1
4(3c2

1 − c2), γ4 = − 1
32(27c3

1 + 4c3 − 21c1c2)
and
γ5 = − 3

160

(
4c4 + 69c2

1c2 − 22c1c3 − 7c2
2 − 54c4

1

)
.

By Lemma 1.1, it is clear that |γ2| ≤ 3/2. Using Lemma 1.1, we can
get the bounds on the remaining coefficients, but these bounds can be
improved again by using Lemma 1.3. Hence, by using Lemma 1.3 and
Lemma 1.1, we can see easily that

|γ3| ≤ 1
4

(
|c∗2|+ 2|c1|2

)
≤ 5/2

|γ4| ≤ 1
32

(
4|c∗3|+ 13|c∗2||c1|+ 10|c1|3

)
≤ 35/8

and
|γ5| ≤ 3

160

[
4|c∗4|+ 14|c1||c∗3|+ 36|c1|2|c∗2|+ 7|c2||c2

1|+ 3|c2|2
]
≤ 63/8.

To show the equalities in (11), we consider the inverse of f1(z). For this,
we may write

f1(z) =
z − z2/2

(1− z)2
=

1

2

(
z

1− z
+

z

(1− z)2

)
= z +

∞∑
n=2

n+ 1

2
zn.

Now by using (4), we find that

γ2 = −a2 = −3/2, γ3 = 2a2
2− a3 = 5/2, γ4 = 5a2a3− 5a3

2− a4 = −35/8

and

γ5 = 14a4
2 − 21a2

2a3 + 6a2a4 + 3a2
3 − a5 = 63/8.

These values of γi (i = 2, 3, 4, 5) showing the equalities in (11). This
completes the proof of Theorem 2.6.



790 Sudhananda Maharana, Jugal K. Prajapat and Deepak Bansal

Theorem 2.7. Let f ∈ F be of the form (1) and its inverse f−1 be
given by (2). Then for any complex number µ, we have

(15) |γ3 − µγ2
2 | ≤

1

2
max

{
1,
|10− 9µ|

2

}
.

The equality in (15) is attained by the inverse function of f1(z) =
z − z2/2

(1− z)2
.

Proof. By using (14), we get

|γ3 − µγ2
2 | =

1

4

∣∣∣∣c2 −
12− 9µ

4
c2

1

∣∣∣∣ .
The result now follows from the application of Lemma 1.1.

If we take µ = 1 in Theorem 2.7, we obtain the following result.

Corollary 2.8. Let f ∈ F be of the form (1) and its inverse f−1 be
given by (2). Then

|γ3 − γ2
2 | ≤

1

2
.

Theorem 2.9. Let f ∈ F be of the form (1) and its inverse f−1 be
given by (2). Then

(16) |γ2γ3 − γ4| ≤
13
√

78

144
and |γ2γ4 − γ2

3 | ≤
209

512
.

Proof. By using (14), we obtain

(17)

|γ2γ3 − γ4| =
1

32

∣∣9c3
1 − 15c1c2 + 4c3

∣∣
and

|γ2γ4 − γ2
3 | =

1

128

∣∣9c4
1 − 15c2

1c2 − 8c2
2 + 12c1c3

∣∣ .
Using Lemma 1.2 in (17), we obtain

|γ2γ3 − γ4| =
1

64

∣∣5c3
1 + (4− c2

1){−11c1x− 2c1x
2 + 4(1− |x|2)z}

∣∣
and

|γ2γ4 − γ2
3 | =

1

256

∣∣5c4
1 + (4− c2

1){−11c2
1x− 4x2(4− c2

1)

−6c2
1x

2 + 12c1(1− |x|2)z}
∣∣ .

As |c1| ≤ 2, therefore, letting c1 = c, we may assume without restriction
that c ∈ [0, 2]. Thus, applying triangle inequality with µ = |x|, we
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obtain

|γ2γ3 − γ4| ≤
1

64

[
5c3 + (4− c2){11cµ+ 2cµ2 + 4(1− µ2)}

]
:= E(c, µ)

and

|γ2γ4 − γ2
3 | ≤

1

256

[
5c4+(4−c2){11c2µ+2c2µ2+12c(1−µ2)+16µ2)}

]
:= F (c, µ).

Now to prove our results, we need to maximize the values of E and F
over the region Ω = {(c, µ) : 0 ≤ c ≤ 2, 0 ≤ µ ≤ 1}. For this, first
differentiating E with respect to µ and c, we obtain

∂E

∂µ
=

1

64

[
(4− c2)(11c+ 4cµ− 8µ)

]
and

∂E

∂c
=

1

64

[
15c2 − 6c2µ2 − 33c2µ+ 8cµ2 − 8c+ 44µ+ 8µ2

]
.

The condition ∂E
∂µ = 0 gives c = ±2 or µ = 11c

8−4c , and such points

(c, µ) are not interior point of Ω. So the maximum cannot attain in
the interior of Ω. Now to see on the boundary, taking the boundary
line L1 = {(0, µ) : 0 ≤ µ ≤ 1}, we have E(0, µ) = (1 − µ2)/4, and its
maximum on this line is equal to 1/4, which is attained at the point
(0, 0). On the boundary line L2 = {(2, µ) : 0 ≤ µ ≤ 1}, we have
E(2, µ) = 5/8, which is a constant. On the boundary line L3 = {(c, 0) :
0 ≤ c ≤ 2}, we have E(c, 0) = (5c3 − 4c2 + 16)/64, and its maximum
on this line is 5/8, which is attained at the point (2, 0). On the line
L4 = {(c, 1) : 0 ≤ c ≤ 2}, we have E(c, 1) = (52c − 8c3)/64, and
its maximum on this line is 13

√
78/144, which is attained at the point

(
√

13/6, 1). Comparing these results, we get

max
Ω

E(c, µ) = E
(√

13/6, 1
)

=
13
√

78

144
.

Further, differentiating F with respect to µ and c, we obtain

∂F

∂µ
=

1

256

[
(4− c2)(11c2 + 4c2µ+ 32µ− 24cµ)

]
and

∂F

∂c
=

1

256

[
20c3 − 8c3µ2 − 44c3µ− 36c2

+36c2µ2 + 8cµ− 16cµ2 − 48µ2 + 48
]
.



792 Sudhananda Maharana, Jugal K. Prajapat and Deepak Bansal

The condition ∂F
∂µ = 0 gives c = ±2 or µ = − 11c2

4(8−6c+c2)
, and such points

(c, µ) are not interior point of Ω. So the maximum cannot attain in the
interior of Ω. Now to see on the boundary, taking the boundary line
L1 = {(0, µ) : 0 ≤ µ ≤ 1}, we have F (0, µ) = µ2/4, and its maximum
on this line is equal to 1/4, which is attained at the point (0, 1). On the
boundary line L2 = {(2, µ) : 0 ≤ µ ≤ 1}, we have F (2, µ) = 5/16, which
is a constant. On the boundary line L3 = {(c, 0) : 0 ≤ c ≤ 2}, we have
F (c, 0) = (5c4 − 12c3 + 48c)/256, and its maximum on this line is 5/16,
which is attained at the point (2, 0). On the line L4 = {(c, 1) : 0 ≤ c ≤
2}, we have F (c, 1) = (−8c4 + 36c2 + 64)/256, and its maximum on this
line is 209/512, which is attained at the point (3/2, 1). Comparing these
results, we get

max
Ω

F (c, µ) = F (3/2, 1) = 209/512.

This completes the proof of Theorem 2.9.

Theorem 2.10. Let f ∈ F be of the form (1) and its inverse f−1 be
given by (2). Then

|H3,1(f−1)| ≤ 45693 + 3640
√

78

9216
.

Proof. By using Theorem 2.6, Corollary 2.8, Theorem 2.9 and the
triangle inequality, we get

|H3,1(f−1)| ≤ |γ3||γ2γ4 − γ2
3 |+ |γ4||γ2γ3 − γ4|+ |γ5||γ3 − γ2

2 |

=
45693 + 3640

√
78

9216
.

This completes the proof of Theorem 2.10.

Open Problem

Löwner [21] proved that, if f ∈ S and its inverse is given by (2), then

the sharp estimate |γn| ≤ Γ(2n+1)
Γ(n+1)Γ(n+2) holds and the inverse of the

Koebe function k(z) = z/(1 − z)2 provides the equality bounds for all
|γn| (n = 2, 3, · · · ). But still there are many important subclasses of
class S like class of starlike functions, class of convex functions etc. for
which sharp upper bounds of |γn| are unknown.

References

[1] R. M. Ali, Coefficient of the inverse of strongly starlike functions, Bull. Malays.
Math. Sci. Soc. (Second Series) 26 (2003), 63–71.



Coefficient bounds 793
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[9] U. Grenanderand and G. Szegö, Toeplitz forms and their application, Univ. of
California Press, Berkeley and Los Angeles, 1958.

[10] W. K. Hayman, On second Hankel determinant of mean univalent functions,
Proc. London Math. Soc. 18 (1968), 77–94.

[11] A. Janteng, S. Halim, and M. Darus, Coefficient inequality for a function whose
derivative has a positive real part, J. Inequal. Pure Appl. Math. 7(2) (2006), 1–5.

[12] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike
functions of positive order, J. Math. Anal. Appl. 329 (2007), 922–934.

[13] F. R. Keogh and E. P. Merkes, A Coefficient Inequality for Certain Classes of
Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
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