DOI QR코드

DOI QR Code

Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Shamim, Raja A. (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Ahmad, Manzoor (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.06.09
  • Accepted : 2020.10.27
  • Published : 2020.12.25

Abstract

In cells, the microtubules are surrounded by viscoelastic medium. Microtubules, though very small in size, perform a vital role in transportation of protein and in maintaining the cell shape. During performing these functions waves propagate and this propagation of waves has been investigated using nonlocal elastic theory. But the effect of surrounding medium was not taken into account. To fill this gap, this study considers the viscoelastic medium along with nonlocal elastic theory. The analytical formulas of the velocity of waves, and the results reveal that the presence of medium reduces the velocity. The axisymmetric and nonaxisymmetric waves are separately discussed. Furthermore, the results are compared with the results gained from the studies of free microtubules. The presence of medium around microtubules results in the increase of the flexural rigidity causing a significant decrease in radial wave velocity as compared to axial and circumferential wave velocities. The effect of viscoelastic medium is more obvious on radial wave velocity, to a lesser extent on torsional wave velocity and least on longitudinal wave velocity.

Keywords

Acknowledgement

The research team thanks the efforts of King Khalid University in financing this applied research and providing all the facilities (laboratories, hardware and software) in the College of Engineering. In addition, special thanks to Civil Engineering Department where this applied research work achieved. Finally, thanks again to Deanship of Scientific Research in King Khalid University to continue to support scientific research until it becomes among the best universities locally and internationally. Within the framework of small research projects given by the Deanship of Scientific Research the grant number is 305.

References

  1. Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mech., 224, 1415-1427. https://doi.org/10.1007/s00707-013-0817-2.
  2. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111.
  3. An, L. and Gao, Y. (2010), "Mechanics behavior of microtubules based on nonlocal anisotropic shell theory", IOP Confer. Series Mater. Sci. Eng., 10(1), 012181. https://doi.org/10.1088/1757-899X/10/1/012181.
  4. Ansari, R. and Arash, B. (2013), "Nonlocal Flügge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/80/2/021006/370643. https://doi.org/10.1115/1.4007432
  5. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. http://dx.doi.org/10.12989/sss.2016.18.4.787.
  6. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033.
  7. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  8. Born, M. and Huang, K. (1954), Dynamical Theory of Crystal Lattices, Clarendon press, London, UK.
  9. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  10. Boutaleb, S., Benrahou K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
  11. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  12. Civalek, O., Demir, C. and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298. https://doi.org/10.3390/mca15020289.
  13. Daneshmand, F., Ghavanloo, E. and Amabili, M. (2011), "Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations", J. Biomech., 44(10), 1960-1966. https://doi.org/10.1016/j.jbiomech.2011.05.003.
  14. De Pablo, P.J., Schaap, I.A., MacKintosh, F.C. and Schmidt, C.F. (2003), "Deformation and collapse of microtubules on the nanometer scale", Phys. Rev. Lett., 91(9), 098101. https://doi.org/0.1103/PhysRevLett.91.098101. https://doi.org/10.1103/PhysRevLett.91.098101
  15. Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
  16. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  17. Eringen, A.C. (1977), "Relation between non-local elasticity and lattice dynamics", Crystal Latt. Def., 7, 51-57. https://ci.nii.ac.jp/naid/80014851754.
  18. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media, Colorado, USA.
  19. Flugge, S., (1973), Stresses in Shells, Springer, Berlin, Germany.
  20. Gao, Y. and Lei, F.M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Biochem. Biophys. Res. Commun., 387(3), 467-471. https://doi.org/10.1016/j.bbrc.2009.07.042.
  21. Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E Low Dimens. Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
  22. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. http://doi.org/10.1083/jcb.120.4.923.
  23. Heydarpour, Y., Aghdam, M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. http://doi.org/10.1016/j.compstruct.2014.06.023.
  24. Hussain, M. and Naeem, M.N. (2019a), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model, 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  25. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  26. Hussain, M., Naeem. M., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int., J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  27. Ishida, T., Thitamadee, S. and Hashimoto, T. (2007), "Twisted growth and organization of cortical microtubules", J. Plant Res., 120(1), 61-70. https://doi.org/10.1007/s10265-006-0039-y.
  28. Kasas, S., Cibert, C., Kis, A., De Rios, P.L., Riederer, B.M., Forro, L., Dietler, G. and Catsicas, S. (2004), "Oscillation modes of microtubules", Biol. Cell, 96(9), 697-700. https://doi.org/10.1016/j.biolcel.2004.09.002.
  29. Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155.
  30. Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solids Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
  31. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
  32. Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., Int. J., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495.
  33. Li, C., Ru, C.Q. and Mioduchowski, A. (2006), "Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules", Biochem. Biophys. Res. Commun., 349(3), 1145-1150. https://doi.org/10.1016/j.bbrc.2006.08.153.
  34. Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J Sound Vib., 281, 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.
  35. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., Int. J., 24, 359-367. https://doi.org/10.12989/scs.2017.24.3.359.
  36. Needleman, D.J., Ojeda-Lopez, M.A., Raviv, U., Ewert, K., Miller, H.P., Wilson, L. and Safinya, C.R. (2005), "Radial compression of microtubules and the mechanism of action of taxol and associated proteins", Biophys. J., 89(5), 3410-3423. https://doi.org/10.1529/biophysj.104.057679.
  37. Nogales, E. (2001), "Structural insights into microtubule function", Ann. Rev. Biophys. Biomol. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.
  38. Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
  39. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the prestress-accumulation release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027.
  40. Qian, X.S., Zhang, J.Q. and Ru, C.Q. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.2717573.
  41. Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.
  42. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., Int. J., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.
  43. She, G.L., Ren, Y.R. and Yuan, F.G. (2019), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., Int. J., 31(6), 641-653. https://doi.org/10.12989/scs.2019.31.6.641.
  44. Shen, H.S. (2010a), "Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium", Biomech. Model. Mechanobiol., 9(3), 345-357. https://doi.org/10.1007/s10237-009-0180-3.
  45. Shen, H.S. (2010b), "Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model", J. Theor. Biol., 264(2), 386-394. https://doi.org/10.1016/j.jtbi.2010.02.014.
  46. Shen, H.S. (2011), "Nonlinear vibration of microtubules in living cells", Curr. Appl. Phys., 11(3), 812-821. https://doi.org/10.1016/j.cap.2010.11.116.
  47. Tahouneh, V. (2017), "Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate", Steel Compos. Struct., Int. J., 25(6), 649-661. https://doi.org/10.12989/scs.2017.25.6.649.
  48. Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
  49. Taj, M. and Zhang, J.Q. (2012), "Analysis of vibrational behaviors of microtubules embedded within elastic medium by Pasternak model", Biochem. Biophys. Res. Commun., 424(1), 89-93. https://doi.org/10.1016/j.bbrc.2012.06.072.
  50. Taj, M. and Zhang, J. (2014), "Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model", J. Mech. Behav. Biomed. Mater., 30, 300-305. https://doi.org/10.1016/j.jmbbm.2013.11.011.
  51. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
  52. Tuszynski, J.A., Luchko, T., Portet, S. and Dixon, J.M. (2005), "Anisotropic elastic properties of microtubules", Eur. Phys. J. E, 17(1), 29-35. https://doi.org/10.1140/epje/i2004-10102-5.
  53. Wang, C.Y., Ru, C.Q. and Mioduchowski, A. (2006), "Orthotropic elastic shell model for buckling of microtubules", Phys. Rev. E, 74(5), 052901. https://doi.org/10.1103/PhysRevE.74.052901.
  54. Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
  55. Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart Mater. Struct., 16(1), 178. https://doi.org/10.1088/0964-1726/16/1/022.
  56. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
  57. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.
  58. Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.