DOI QR코드

DOI QR Code

Particle Dispersion Model Speed Improvement and Evaluation for Quick Reaction to Pollutant Accidents

신속한 오염사고 대응을 위한 입자 분산 모형의 속도 개선 및 평가

  • 신재현 (한국건설기술연구원 국토보전연구본부 박사 후 연구원) ;
  • 성호제 (한국건설기술연구원 국토보전연구본부 전임 연구원) ;
  • 박인환 (서울과학기술대학교 건설시스템공학과 교수) ;
  • 이동섭 (한국건설기술연구원 국토보전연구본부 연구 위원)
  • Received : 2020.10.26
  • Accepted : 2020.11.29
  • Published : 2020.12.28

Abstract

This study deals with the development and improvement of a particle dispersion model for quick response to water pollutant accidents. The developed model is based on the shear dispersion theory where vertical mixing is done by step by step mixing by vertical and molecular diffusion algorithm. For the quick response to chemical accidents, an algorithm for multi-core modeling for the particle dispersion model is applied. After the application of multi-core operation using OpenMP directives to the model, the relation for the calculation time and particle size were determined along with the number of cores used for parallel programming to determine the model time for chemical accident responses. The results showed the adequate conditions for the modeling of chemical accidents for quick response and to increase the applicability of the model.

본 연구에서는 오염물 사고에 대한 신속한 대응을 위하여 입자 분산 모형을 개발 및 개선하고 병렬 프로그램을 적용한 모의 속도 증가와 그 분석을 통하여 속도개선 결과를 평가하였다. 개발된 모형은 전단류 분산이론을 따르면서 수평 혼합 과정은 전단이송, 연직 혼합 과정은 연직배열 알고리즘을 이용한 난류 및 입자 확산을 구현하였다. 오염사고에 신속하게 대응하기 위해 모형 속도 개선을 위하여 OpenMP를 활용한 병렬 프로그래밍으로 멀티코어 적용 알고리즘을 적용하였다. 병렬 프로그래밍 적용 결과, 가상 사행수로에서 기준 소요시간 내로 모의가 가능한 입자 및 활용 코어 개수의 관계를 도출할 수 있었다. 이 연구 결과로 신속한 수질 오염사고 사고대응을 위한 적절한 모의 조건을 구성할 수 있게 되어 모형의 활용성을 증대할 수 있었다.

Keywords

References

  1. I. W. Seo, H. J. Choi, Y. D. Kim, and E. J. Han, "Analysis of Two-dimensional Mixing in Natural Streams Based on Transient Tracer Tests," Journal of Hydraulic Engineering, Vol.142, No.8, p.04016020, 2016. https://doi.org/10.1061/(asce)hy.1943-7900.0001118
  2. M. E. Lee and I. W. Seo, "Analysis of Pollutant Transport in the Han River with Tidal Current Using a 2D Finite Element Model," Journal of Hydro-Environment Research, Vol.1, No.1, pp.30-42, 2007. https://doi.org/10.1016/j.jher.2007.04.006
  3. I. Park and I. W. Seo, "Modeling Non-Fickian Pollutant Mixing in Open Channel Flows Using Two-dimensional Particle Dispersion Model," Advances in Water Resources, Vol.111, pp.105-120, 2018. https://doi.org/10.1016/j.advwatres.2017.10.035
  4. C. G. Kim and J. G. Kim, "Optimizing Image Processing on Multi-core CPUs with Intel Parallel Programming Technologies," Multimedia Tools and Applications, Vol.68, No.2, pp.237-251, 2014. https://doi.org/10.1007/s11042-011-0906-y
  5. 박인환, 김형석, 성호제, 수질오염사고 분석 정확도 향상을 위한 입자분산모형 개발, KICT 2018-116, 한국건설기술연구원 주요사업 보고서, 2018.
  6. I. L. Rozovskii, Flow of water in bends of open channels, Academy of Sciences of the Ukrainian SSR, 1957.
  7. A. J. Odgaard, "Meander Flow Model. I: Development," Journal of Hydraulic Engineering, Vol.112, No.12, pp.1117-1135, 1986. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:12(1117)
  8. G. E. P. Box and M. E. Muller, "A Note on the Generation of Random Normal Deviates," The Annals of Mathematical Statistics, Vol.29, pp.610-611, 1958. https://doi.org/10.1214/aoms/1177706645
  9. H. B. Fischer, J. E. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, Mixing in Inland and Coastal Waters, Academic Press, 1979.
  10. C. G. Song, I. W. Seo, and Y. D. Kim, "Analysis of Secondary Current Effect in the Modelling of Shallow Water Flow in Open Channels," Advances in Water Resources, Vol.41, pp.29-48, 2012. https://doi.org/10.1016/j.advwatres.2012.02.003
  11. H. J. de Vriend, "A Mathematical Model of Steady Flow in Curved Shallow Channels," Journal of Hydraulic Research, Vol.15, No.1, pp.37-54, 1977. https://doi.org/10.1080/00221687709499748
  12. H. Kikkawa, S. Ikeda, and A. Kitagawa, "Flow and Bed Topography in Curved Open Channels," Journal of the Hydraulics Division, Vol.102, No.9, 1976.
  13. 김수영, 윤광석, "분포형 유역유출모형의 홍수예보시스템 적용을 위한 최적해상도 결정에 관한 연구-GRM 모형을 활용하여 금호강 유역을 중심으로," 한국수자원학회논문집, 제52권, 제2호, pp.107-113, 2019. https://doi.org/10.3741/jkwra.2019.52.2.107
  14. N. G. Dickson, K. Karimi, and F. Hamze, "Importance of Explicit Vectorization for CPU and GPU Software Performance," Journal of Computational Physics, Vol.230, No.13, pp.5383-5398, 2011. https://doi.org/10.1016/j.jcp.2011.03.041
  15. R. Allen and K. Kennedy, Optimizing Compilers for Modern Architectures: a Dependence-based Approach, Taylor & Francis US, 2002.
  16. J. M. Dominguez, A. J. Crespo, and M. Gómez-Gesteira, "Optimization strategies for CPU and GPU implementations of a Smoothed Particle Hydrodynamics Method," Computer Physics Communications, Vol.184, No.3, pp.617-627, 2013. https://doi.org/10.1016/j.cpc.2012.10.015
  17. P. V. Le, P. Kumar, A. J. Valocchi, and H. V. Dang, "GPU-based High-performance Computing for Integrated Surface-sub-surface Flow Modeling," Environmental Modelling & Software, Vol.73, pp.1-13, 2015. https://doi.org/10.1016/j.envsoft.2015.07.015
  18. S. J. Noh, J. H. Lee, S. Lee, K. Kawaike, and D. J. Seo, "Hyper-resolution 1D-2D Urban Flood Modelling Using LiDAR Data and Hybrid Parallelization," Environmental Modelling & Software, Vol.103, pp.131-145, 2018. https://doi.org/10.1016/j.envsoft.2018.02.008
  19. J. C. Neal, T. J. Fewtrell, P. D. Bates, and N. G. Wright, "A Comparison of Three Parallelisation Methods for 2D Flood Inundation Models," Environmental Modelling & Software, Vol.25, No.4, pp.398-411, 2010. https://doi.org/10.1016/j.envsoft.2009.11.007
  20. S. Zhang, Z. Xia, R. Yuan, and X. Jiang, "Parallel Computation of a Dam-break Flow Model Using OpenMP on a Multi-core Computer," Journal of Hydrology, Vol.512, pp.126-133, 2014. https://doi.org/10.1016/j.jhydrol.2014.02.035