References
- M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, "Evaluating Collaborative Filtering Recommender Algorithms: A Survey," IEEE Access, Vol. 6, pp. 74003-74024, 2018. DOI: 10.1109/ACCESS.2018.2883742
- B. Shao, X. Li, and G. Bian, "A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph," Expert Systems with Applications, Vol. 165, 2021. DOI: 10.1016/j.eswa.2020.113764
- M. Aamir and M. Bhusry, "Recommendation System: State of the Art Approach," International Journal Computer Applications, Vol. 120, No. 12, pp. 25-32, 2015. DOI: 10.5120/21281-4200
- S. Kosub, "A note on the triangle inequality for the Jaccard distance," Pattern Recognition Letters, Vol. 120, pp. 36-38, 2019. DOI: 10.1016/j.patrec.2018.12.007
- J. Bobadilla, F. Serradilla, and J. Bernal, "A new collaborative filtering metric that improves the behavior of recommender systems," Knowledge-Based Systems, Vol. 23, No. 6, pp. 520-528, 2010. DOI: 10.1016/j.knosys.2010.03.009
- A. Iftikhar, M. A. Ghazanfar, M. Ayub, Z. Mehmood, and M. Maqsood, "An Improved Product Recommendation Method for Collaborative Filtering," IEEE Access, Vol. 8, pp. 123841-123857, 2020. DOI: 10.1109/ACCESS.2020.3005953
- S.-B. Sun, Z.-H. Zhang, X.-L. Dong, H.-R. Zhang, T.-J. Li, L. Zhang, and F. Min, "Integrating triangle and Jaccard similarities for recommendation," PLoS ONE, Vol. 12, No. 8, 2017. DOI: 10.1371/journal.pone.0183570
- J. Guo, J. Deng, X. Ran, Y. Wang, and H. Jin, "An efficient and accurate recommendation strategy using degree classification criteria for item-based collaborative filtering," Expert Systems with Applications, Vol. 164, 2021. DOI: 10.1016/j.eswa.2020.113756
- Y. Mu, N. Xiao, R. Tang, L. Luo, and X. Yin, "An efficient similarity measure for collaborative filtering," Procedia Computer Science, Vol. 147, pp. 416-421, 2019. DOI: 10.1016/j.procs.2019.01.258
- S. Bag, S.K. Kumar, and M.K. Tiwari, "An efficient recommendation generation using relevant Jaccard similarity," Information Sciences, Vol. 483, pp. 53-64, 2019. DOI: 10.1016/j.ins.2019.01.023
- B. K. Patra, R. Launonen, V. Ollikainen, and S. Nandi. "A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data," Knowledge-Based Systems, Vol. 82, pp. 163-177, 2015. DOI: 10.1016/j.knosys.2015.03.001
- A. Jain, P. K. Singh, and J. Dhar, "Multi-objective item evaluation for diverse as well as novel item recommendations," Expert Systems with Applications, Vol. 139, 2020. DOI: 10.1016/j.eswa.2019.112857
- H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, "A new user similarity model to improve the accuracy of collaborative filtering," Knowledge Based Systems, Vol. 56, pp. 156-166, 2014. DOI: 10.1016/j.knosys.2013.11.006
- J. Deng, Y. Wang, J. Guo, Y. Deng, J. Gao, and Y. Park, "A similarity measure based on Kullback-Leibler divergence for collaborative filtering in sparse data," Journal of Information Science, Vol. 45, No. 5, pp. 656-675, 2018. DOI: 10.1177/0165551518808188
- Y. Wang, P. Wang, Z. Liu, and Leo Zhang, "A new item similarity based on α-divergence for collaborative filtering in sparse data," Expert Systems with Applications, Vol. 166, 2021. DOI: 10.1016/j.eswa.2020.114074
- Y. Wang, J. Deng, J. Gao, and P. Zhang, "A hybrid user similarity model for collaborative filtering, Information Sciences," Vol. 418-419, pp. 102-118, 2017. DOI: 10.1016/j.ins.2017.08.008