DOI QR코드

DOI QR Code

Similarity Measure based on Utilization of Rating Distributions for Data Sparsity Problem in Collaborative Filtering

  • Lee, Soojung (Dept. of Computer Education, Gyeongin National University of Education)
  • 투고 : 2020.10.26
  • 심사 : 2020.12.10
  • 발행 : 2020.12.31

초록

메모리 기반의 협력 필터링은 추천 시스템의 대표적인 타입이지만 데이터 희소성이라는 본질적인 문제를 갖고 있다. 이 문제를 해결하기 위해 많은 연구 업적들이 이루어졌으나, 보다 체계적인 접근 방법은 여전히 요구된다. 본 연구는 사용자 간의 유사도를 산출하기 위하여 항목들에 대한 사용자 평가치 분포를 활용한다. 따라서 제안 방법은 사용자의 모든 평가치를 이용하므로, 공통 항목에 대한 평가치만을 이용하는 기존 방법들과 대비된다. 더욱이, 각 항목에 대한 다른 사용자들의 평가치들을 유사도 계산에 반영함으로써 항목 평가치의 광역적인 관점을 취한다. 제안 방법의 성능은 실험을 통하여 평가하였고, 연관된 다른 방법들과 비교하였다. 그 결과, 제안 방법은 예측과 순위 정확도 측면에서 우수한 성능을 보였다. 이러한 예측 정확도의 향상은 전통적인 유사도 척도에 비해 최근의 방법으로 달성한 것보다 최고 2.6배 더 높다.

Memory-based collaborative filtering is one of the representative types of the recommender system, but it suffers from the inherent problem of data sparsity. Although many works have been devoted to solving this problem, there is still a request for more systematic approaches to the problem. This study exploits distribution of user ratings given to items for computing similarity. All user ratings are utilized in the proposed method, compared to previous ones which use ratings for only common items between users. Moreover, for similarity computation, it takes a global view of ratings for items by reflecting other users' ratings for that item. Performance is evaluated through experiments and compared to that of other relevant methods. The results reveal that the proposed demonstrates superior performance in prediction and rank accuracies. This improvement in prediction accuracy is as high as 2.6 times more than that achieved by the state-of-the-art method over the traditional similarity measures.

키워드

참고문헌

  1. M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, "Evaluating Collaborative Filtering Recommender Algorithms: A Survey," IEEE Access, Vol. 6, pp. 74003-74024, 2018. DOI: 10.1109/ACCESS.2018.2883742
  2. B. Shao, X. Li, and G. Bian, "A survey of research hotspots and frontier trends of recommendation systems from the perspective of knowledge graph," Expert Systems with Applications, Vol. 165, 2021. DOI: 10.1016/j.eswa.2020.113764
  3. M. Aamir and M. Bhusry, "Recommendation System: State of the Art Approach," International Journal Computer Applications, Vol. 120, No. 12, pp. 25-32, 2015. DOI: 10.5120/21281-4200
  4. S. Kosub, "A note on the triangle inequality for the Jaccard distance," Pattern Recognition Letters, Vol. 120, pp. 36-38, 2019. DOI: 10.1016/j.patrec.2018.12.007
  5. J. Bobadilla, F. Serradilla, and J. Bernal, "A new collaborative filtering metric that improves the behavior of recommender systems," Knowledge-Based Systems, Vol. 23, No. 6, pp. 520-528, 2010. DOI: 10.1016/j.knosys.2010.03.009
  6. A. Iftikhar, M. A. Ghazanfar, M. Ayub, Z. Mehmood, and M. Maqsood, "An Improved Product Recommendation Method for Collaborative Filtering," IEEE Access, Vol. 8, pp. 123841-123857, 2020. DOI: 10.1109/ACCESS.2020.3005953
  7. S.-B. Sun, Z.-H. Zhang, X.-L. Dong, H.-R. Zhang, T.-J. Li, L. Zhang, and F. Min, "Integrating triangle and Jaccard similarities for recommendation," PLoS ONE, Vol. 12, No. 8, 2017. DOI: 10.1371/journal.pone.0183570
  8. J. Guo, J. Deng, X. Ran, Y. Wang, and H. Jin, "An efficient and accurate recommendation strategy using degree classification criteria for item-based collaborative filtering," Expert Systems with Applications, Vol. 164, 2021. DOI: 10.1016/j.eswa.2020.113756
  9. Y. Mu, N. Xiao, R. Tang, L. Luo, and X. Yin, "An efficient similarity measure for collaborative filtering," Procedia Computer Science, Vol. 147, pp. 416-421, 2019. DOI: 10.1016/j.procs.2019.01.258
  10. S. Bag, S.K. Kumar, and M.K. Tiwari, "An efficient recommendation generation using relevant Jaccard similarity," Information Sciences, Vol. 483, pp. 53-64, 2019. DOI: 10.1016/j.ins.2019.01.023
  11. B. K. Patra, R. Launonen, V. Ollikainen, and S. Nandi. "A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data," Knowledge-Based Systems, Vol. 82, pp. 163-177, 2015. DOI: 10.1016/j.knosys.2015.03.001
  12. A. Jain, P. K. Singh, and J. Dhar, "Multi-objective item evaluation for diverse as well as novel item recommendations," Expert Systems with Applications, Vol. 139, 2020. DOI: 10.1016/j.eswa.2019.112857
  13. H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, "A new user similarity model to improve the accuracy of collaborative filtering," Knowledge Based Systems, Vol. 56, pp. 156-166, 2014. DOI: 10.1016/j.knosys.2013.11.006
  14. J. Deng, Y. Wang, J. Guo, Y. Deng, J. Gao, and Y. Park, "A similarity measure based on Kullback-Leibler divergence for collaborative filtering in sparse data," Journal of Information Science, Vol. 45, No. 5, pp. 656-675, 2018. DOI: 10.1177/0165551518808188
  15. Y. Wang, P. Wang, Z. Liu, and Leo Zhang, "A new item similarity based on α-divergence for collaborative filtering in sparse data," Expert Systems with Applications, Vol. 166, 2021. DOI: 10.1016/j.eswa.2020.114074
  16. Y. Wang, J. Deng, J. Gao, and P. Zhang, "A hybrid user similarity model for collaborative filtering, Information Sciences," Vol. 418-419, pp. 102-118, 2017. DOI: 10.1016/j.ins.2017.08.008