DOI QR코드

DOI QR Code

Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA)

  • Heo, Seong-Min (Dept. of Applied Mathematics, Kumoh National Institute of Technology) ;
  • Yang, Ji-Yeon (Dept. of Applied Mathematics, Kumoh National Institute of Technology)
  • Received : 2020.11.18
  • Accepted : 2020.12.07
  • Published : 2020.12.31

Abstract

This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", and "Religion-Related". In addition, we used the multinomial logistic model to examine the trend of research topics. We found that the papers mainly cover topics related to "International Dynamics" and "Biomedical-Related" before June 2020, but the topics have become diverse since then. In particular, topics regarding "Economic Impact", "Online Education" and "Psychological Impact" has drawn increased attention of researchers. The findings would provide a guideline for collaboration in Covid19-related research, and could serve as a reference work for active research.

본 연구에서는 DBpia에 등록된 코로나19 관련 논문을 대상으로 연구 토픽을 밝히고 연구 변화 추세를 검토한다. 잠재 디리슐레 할당(Latent Dirichlet Allocation) 알고리즘을 적용한 결과, 7개의 연구 토픽을 도출하였고, 각 토픽은 "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", "Religion-Related"에 관한 내용이었다. 또한 다범주 로짓모형을 사용하여 연구 토픽의 추세 변화를 살펴본 결과, 2020년 6월 전에는 국제적 역학관계 및 생물 의학 관련 논문이 주를 이루었다면, 이후에는 다양한 분야로 연구 주제가 확대되었다. 특히 경제적인 영향, 온라인 교육, 심리적인 영향에 관한 연구가 꾸준히 증가함을 확인할 수 있었다. 이러한 결과는 향후 코로나19 관련 공동 연구의 가이드 라인을 제시하고, 활발한 연구 활동을 위한 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Centers for Disease Control and Prevention(CDC), https://www.cdc.gov/sars/
  2. F. S. Dawood, A. D. Iuliano, C. Reed, et al., "Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study," The Lancet infectious diseases, Vol. 12, No. 9, pp. 687-695, Sep. 2012. DOI: 10.1016/S1473-3099(12)70121-4
  3. World Health Organization, "Middle East respiratory syndrome coronavirus (MERS-CoV) - The Kingdom of Saudi Arabia," Jul. 2019. https://www.who.int/csr/don/ 24-july-2019-mers-saudi-arab ia/en/
  4. Korea Disease Control and Prevention Agency, http://www.cdc.go.kr/contents.es?mid=a20301020709
  5. World Health Organization, "WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020," Feb. 2020. https://www.who.int/dg/speeches/detail/who- director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
  6. World Health Organization, "WHO Director-General's Opening Remarks at the Media Briefing on Covid-19 - 11 March 2020," Mar. 2020. https://www.who.int/dg/speeches/detail/who-directorgeneral-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  7. K. F. Yuen, X. Wang, F. Ma, and K. X. Li, "The Psychological Causes of Panic Buying Following a Health Crisis," International Journal of Environmental Research and Public Health, Vol. 17, No. 10, pp. 3513-3536, May 2020. DOI: 10.3390/ijerph17103513
  8. N. Zhu, D. Zhang, W. Wang, et al., "A novel coronavirus from patients with pneumonia in China, 2019," New England Journal of Medicine, Vol. 382, No. 8, pp. 727-733, Feb. 2020. DOI: 10.1056/NEJMoa2001017
  9. S. P. Kaur and V. Gupta, "COVID-19 Vaccine: A comprehensive status report," Virus Research, Vol. 288, Oct. 2020. DOI: doi: 10.1016/j.virusres.2020.198114
  10. Y. Jeong, "2019 Novel Coronavirus Disease Outbreak and Molecular Genetic Characteristics of Severe Acute Respiratory Syndrome-Coronavirus-2," Journal of Bacteri- ology and Virology, Vol. 50, No. 1, pp. 1-8, Jan. 2020. DOI: 10.4167/jbv.2020.50.1.001
  11. M. Nicola, Z. Alsafi, C. Sohrabi, et al., "The socio-economic implications of the coronavirus pandemic (COVID-19): A review," International Journal of Surgery, Vol. 78, pp. 185-193, Jun. 2020. DOI: 10.1016/j.ijsu.2020. 04.018
  12. D. Banerjee and M. Rai, "Social isolation in Covid-19: The impact of loneliness," International Journal of Social Psychiatry, Vol. 66, No. 6, pp. 525-527, Sep. 2020. DOI: 10.1177/0020764020922269
  13. S. Jun and J. Kim, "Theoretical Background and Prospects for the Untact Industry," Journal of New Industry and Business, Vol. 38, No. 1, pp. 96-116, Jun 2020. https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09405985 https://doi.org/10.30753/EMR.2020.38.1.005
  14. W. Kim, J. Han, and K. E. Lee, "Predictors of Mortality in Patients with COVID-19: A Systematic Review and Meta-analysis," Korean Journal of Clinical Pharmacy, Vol. 30, No. 3, pp. 169-176, Sep. 2020. DOI: 10.24304/kjcp. 2020.30.3.169
  15. F. Shi, J. Wang, J. Shi, et al., "Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19", IEEE Reviews in Biomedical Engineering, Apr. 2020. DOI: 10.1109/RBME. 2020.2987975
  16. A. Ebadi, P. Xi, S. Tremblay, et al., "Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing," arXiv preprint arXiv:2007.11604, 2020.
  17. H. Zhang and R. Shaw, "Identifying Research Trends and Gaps in the Context of COVID-19," International Journal of Environmental Research and Public Health, Vol. 17, No. 10, pp. 3370-3386, May 2020. DOI: 10.3390/ijerph171033 70
  18. T. Kim, "COVID-19 News Analysis Using News Big Data : Focusing on Topic Modeling Analysis," The Journal of the Korea Contents Association, Vol. 20, No. 5, pp. 457-466, May 2020. DOI: 10.5392/JKCA.2020.20.05.457
  19. Korea Institute of Science and Technology, "KISTI DATA INSIGHT," Vol 12, Apr. 2020. http://mirian.kisti.re.kr/ insight/insight.jsp
  20. D. M. Blei, "Probabilistic topic models," Communications of the ACM, Vol. 55, No. 4, pp. 77-84, Apr. 2012. DOI: 10.1145/2133806.2133826
  21. D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of machine Learning research, Vol. 3, pp. 993-1022, Jan. 2003. DOI: 10.1162/jmlr.2003.3.4-5.993
  22. J. Y. Yang, "Convergence Study on Research Topics for Thyroid Cancer in Korea," Journal of the Korea Convergence Society, Vol. 10, No. 2, pp. 75-81, Feb. 2019. DOI: 10.15207/JKCS.2019.10.2.075
  23. G. Casella and E. I. George, "Explaining the Gibbs sampler," The American Statistician, Vol. 46, No. 3, pp. 167-174, Feb. 2012. DOI: 10.1080/00031305.1992.10475878
  24. S. Yoon and M. Kim, "Topic Modeling on Fine Dust Issues Using LDA Analysis," Journal of Energy Engineering, Vol. 29, No. 2, pp. 23-29, May. 2020. DOI: 10.5855/ENERGY. 2020.29.2.023
  25. J. Sim and H. Kim, "A Searching Method for Legal Case Using LDA Topic Modeling," Journal of the Institute of Electronics and Information Engineers, Vol. 54, No. 9, pp. 67-75, Sep. 2017. DOI: 10.5573/ieie.2017.54.9.67
  26. S. Moon, S. Chung, and S. Chi, "Topic modeling of news article about international construction market using latent Dirichlet allocation," Journal of the Korean Society of Civil Engineers, Vol. 38, No. 4, pp. 595-599, Aug. 2018. DOI: 10.12652/Ksce.2018.38.4.0595
  27. T. L. Griffiths and M. Steyvers, "Finding scientific topics. Proceedings of the National academy of Sciences," Vol. 101, No. suppl 1, pp. 5228-5235, Apr. 2004. DOI: 10.1073/pnas.0307752101
  28. R. Deveaud, E. SanJuan, and P. Bellot, "Accurate and effective latent concept modeling for ad hoc information retrieval," Document numerique, Vol. 17, No. 1, pp. 61-84, Jun. 2014. DOI: 10.3166/DN.17.1.61-84
  29. J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang, "A density-based method for adaptive lda model selection," Neurocomputing, Vol. 72, No. 7, pp. 1775-1781, Mar. 2009. DOI: 10.1016/j.neucom.2008.06.011
  30. R. Arun, V. Suresh, C. V. Madhavan, and M. N. Murthy, "On finding the natural number of topics with latent dirichlet allocation: Some observations," Pacific-Asia Conference on Knowledge Discovery and Data Mining, Vol. Part I, pp. 391-402, Jun. 2010. DOI : 10.1007/978-3-642-13657-3_43

Cited by

  1. 텍스트 분석을 이용한 코로나19 관련 국내 논문의 주제 및 감성에 관한 융합 연구 vol.12, pp.4, 2021, https://doi.org/10.15207/jkcs.2021.12.4.031