Acknowledgement
본 연구는 2019년 정부(국토교통부)의 재원으로 공간정보 융복합 핵심인재 양성 사업의 지원을 받아 수행된 연구임(2019-02-03)
References
- Atkinson, P.M. 2013. Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation. 22, 106-114. https://doi.org/10.1016/j.jag.2012.04.012
- Belgiu, M. and L. Dragut. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 114:24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
- Breiman, L. 2001. Random forests. Machine Learning 45(1):157-176. https://doi.org/10.1023/A:1010933404324
- Chen, Z., J. Pasher, J. Duffe and A. Behnamian. 2017. Mapping Arctic Coastal Ecosystems with High Resolution Optical Satellite Imagery Using a Hybrid Classification Approach. Canadian Journal of Remote Sensing. 43(6):513-527. https://doi.org/10.1080/07038992.2017.1370367
- Chi, J., C. Hyun, H. KIM, H. Joo, E. Yang, H. Park and S. Kang. 2017. Development of Web Based GIS for Polar Ocean Research. The Korean Association of Geographic Information Studies. 20(1):15-25.
- Epstein, H. Raynolds, M. Walker, D. Bhatt, U. Tucker, C. Pinzon, J. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters. 7:015506. https://doi.org/10.1088/1748-9326/7/1/015506
- ESA Standard Document. 2015. Sentinel 2 User Handbook. Issue 1, Rev 2.24. Available online: https://earth.esa.int/documents/247904/685211/Sentinel-2_User_Handbook.pdf (Accessed May 2, 2020).
- Ettehadi, P., S. Kaya, E. Sertel and U. Alganci. 2019. Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sensing. 11(3):345. https://doi.org/10.3390/rs11030345
- Frampton, W., J. Dash, G. Watmough and E. Milton. 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing. 82:(83-92). https://doi.org/10.1016/j.isprsjprs.2013.04.007
- Gao, B. C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3): 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
- Gitelson, A.A., Y.J. Kaufman and M.N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment. 58(3):289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
- Hawrylo, P., B. Bartlomiej, P. Wezyk and M. Szostak. 2018. Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2. European Journal of Remote Sensing. 51(1):194-204. https://doi.org/10.1080/22797254.2017.1417745
- Hoscilo, A. and A. Lewandowska. 2019. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sensing. 11(8): 929. https://doi.org/10.3390/rs11080929
- Huete, A. A. 1988. soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
- Immitzer, M., M. Neuwirth, S. Bock, H. Brenner, F. Vuolo and C. Atzberger. 2019. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sensing. 11(22): 2599. https://doi.org/10.3390/rs11222599
- Jawak, S. and A. Luis. 2014. A Semiautomatic Extraction of Antarctic Lake Features Using Worldview-2 Imagery. Photogrammetric Engineering and Remote Sensing. 80(10):939-952. https://doi.org/10.14358/PERS.80.10.939
- Jeon, H., D. Kim, J. Kim, S. K. D. Vadivel, J. Kim, T. Kim and S. Jeong. 2020. Selection of Optimal Band Combination for Machine Learning-based Water Body Extraction using SAR Satellite Images. The Korean Association of Geographic Information Studies. 23(3):120-131.
- Johansen, B.E., H. Tommervik and S.R. Karlsen. 2012. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Record. 48(244):47-63. https://doi.org/10.1017/S0032247411000647
- Karlsen, S.R., A. Elvebakk, K.A. Hogda and T. Grydeland. 2014. Spatial and Temporal Variability in the Onset of the Growing Season on Svalbard, Arctic Norway - Measured by MODIS-NDVI Satellite Data. Remote Sensing. 6(9):8088-8106. https://doi.org/10.3390/rs6098088
- Kim, H.C. and T.B. Chae. 2019. Status of Korean Research Activity on Arctic Sea Ice Monitoring using KOMPSAT-series Satellite. Journal of Korean Earth Science Society. 40(4):329-339. https://doi.org/10.5467/JKESS.2019.40.4.329
- Kim, S.I., H.C. Kim, J.I. Shin and S.G. Hong. 2013. Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery. Korean Journal of Remote Sensing. Vol.29. No.5:537-544. https://doi.org/10.7780/kjrs.2013.29.5.9
- Langford, Z.L., J. Kumar, F.M. Hoffman, A.L. Breen and C.M. Iversen. 2018. Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural Networks. Remote Sensing. 11(1):69. https://doi.org/10.3390/rs11010069
- Lebourgeois, V., S. Dupuy, E. Vintrou, M. Ameline, S. Butler and A. Begue. 2017. A combined random forest and obia classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated sentinel-2 time series, vhrs and dem). Remote Sensing, 9(3): 259. https://doi.org/10.3390/rs9030259
- Lee, J., J. Im, K. Kim and J. Heo. 2015. Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms. The Korean Association of Geographic Information Studies. 18(4):81-99. https://doi.org/10.11108/kagis.2015.18.4.081
- Maglione, P., C. Parente and A. Vallario. 2014. Coastline extraction using high resolution WorldView-2 satellite imagery. European Journal of Remote Sensing. 47(1):685-699. https://doi.org/10.5721/EuJRS20144739
- National Geographic Information Institute. 2018. 2018 Arctic Spatial Information Establishment Project.
- Nguyen, H., T. Doan, E. Tomppo and R. McRoberts. 2020. Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification Methods -A Case Study from Dak Nong, Vietnam. Remote Sensing. 12(9):1367. https://doi.org/10.3390/rs12091367
- Parnell, L.D., P. Lindenbaum, S. Khader, G. Dall'Olio, M. Swan, L. Jensen, S. Cockell, B. Pedersen, M. Mangan, C. Miller and I. Albert. 2011. BioStar: An Online Question & Answer Resource for the Bioinformatics Community, PLoS Computational Biology. 7(10), pp.e1002216. doi: 10.1371/journal.pcbi.1002216.
- Salvatori, R. R. Casacchia and M. Valt. 2005. Snow surface classification in the Western Svalbard Island. 31th International Symposium on Remote Sensing of Environment: Global Monitoring for Sustainability and Security. Saint Petersburg, Russia, Jun. 20-Jun. 24, 2005.
- Somvanshi, S. and M. Kumari. 2020. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using Sentinel data. Applied Computing and Geosciences. 7:100032. https://doi.org/10.1016/j.acags.2020.100032
- The Local. 2017. Norway to boost climate change defences of 'doomsday' seed vault. May 15, https://www.thelocal.no/20170521/norway-to-boost-climate-change-defences-of-doomsday-seed-vault.(Accessed December 20, 2019).
- Tucker, C.J. 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment. 8(2):127-150. https://doi.org/10.1016/0034-4257(79)90013-0
- Vuolo, F., M. Neuwirth, M. Immitzer, C. Atzberger and W.T. Ng. 2018. How much does multi-temporal Sentinel-2 data improve crop type classification?. International Journal of Applied Earth Observation and Geoinformation. 72:122-130. https://doi.org/10.1016/j.jag.2018.06.007
- Zheng, H., P. Du, J. Chen, J. Xia, E. Li, Z. Xu, X. Li and N. Yokoya. 2017. Performance Evaluation of Downscaling Sentinel-2 Imagery for Land Use and Land Cover Classification by Spectral-Spatial Features. Remote Sensing. 9, 1274. https://doi.org/10.3390/rs9121274