• 제목/요약/키워드: 다중 시기 영상

검색결과 112건 처리시간 0.021초

위성영상의 토지정보 분석정확도 향상을 위한 응용체계의 개발 - 다중시기 영상과 주성분분석 및 정준상관분류 알고리즘을 이용하여 - (Development of a Compound Classification Process for Improving the Correctness of Land Information Analysis in Satellite Imagery - Using Principal Component Analysis, Canonical Correlation Classification Algorithm and Multitemporal Imagery -)

  • 박민호
    • 대한토목학회논문집
    • /
    • 제28권4D호
    • /
    • pp.569-577
    • /
    • 2008
  • 본 연구의 목적은 위성영상으로부터 보다 정확한 토지정보를 취득하기 위해 다중시기데이터의 혼합과 특정 영상강조기법 및 영상분류알고리즘을 병합하여 적용하는 응용분류체계의 개발이다. 즉, 본 연구에서는 혼합된 다중시기데이터를 주성분분석한 후 정준상관분류기법을 적용하는 분류과정을 제안한다. 이 분류과정의 결과를 단일영상별 정준상관분류결과, 다중시기혼합영상의 정준상관분류결과, 시기별 주성분분석 후 정준상관분류결과와 비교한다. 사용된 위성영상은 1994년 7월 26일과 1996년 9월 1일에 취득된 Landsat 5 TM 영상이다. 정확도평가를 위한 지상실제데이터는 지형도 및 항공사진으로부터 취득되었으며, 연구대상영역 전체가 정확도평가 대상으로 사용되었다. 제안된 응용분류체계는 단일영상만을 사용하여 정준상관분류를 수행한 경우보다 분류정확도면에서 약 8.2% 상승되는 우수한 효과를 보여주었다. 특히, 복잡한 토지특성이 혼합되어 있는 도시역을 정확히 분류하는데 유효하였다. 결론적으로 Landsat TM 영상을 사용한 토지피복정보 추출시 분류정확도를 높이기 위해서, 다중시기영상을 사전에 주성분분석 후 정준상관분류기법을 적용하면 매우 효과적임을 확인하였다.

다중시기 11월 Landsat 영상을 이용한 강원도 일대 임상의 변화관찰 및 상록수 영급의 구분 (Observation of Forest Change and Estimation of Tree Ages of the Conifer over Kangwon-do by using Multi-Temporal, November-Landsat Images)

  • 전경미;이훈열
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2006
  • 이 연구에서는 다중시기 Landsat 영상을 이용하여 강원도 일대 임상의 변화를 살펴보고 상록수의 영급을 구분하는 알고리즘을 개발하여 적용하였다. 1980년대에서 현재까지 축적된 Landsat-5와 Landsat-7영상 중에서, 대부분 지역에 활잡목 및 활엽수가 낙엽이 지고 눈이 아직 쌓이지 않을 시기인 11월에 촬영된 영상만을 이용하였다. 각 영상에서 양지바른 상록수, 활엽수, 그늘진 지역, 도시 및 바다 등을 클래스로 지정하여 감돌분류를 하였다. 분류 결과에서 양지바른 상록수만 추출하여 5개의 영상을 이진 분류체계로 조합한 후 임상의 시기적 변화 양상을 관찰한 결과, 강원대 연습림의 조림 기록 및 현황도와 상당히 일치함을 확인하였으며, Path 115, Row 34에 해당하는 강원도 일대로 연구지역을 확대하였다. 향후 Kompsat-2를 비롯한 고해상도 11월 영상이 지속적으로 촬영된다면, 이 연구에서 개발된 이진 분류체계 방법을 통하여 산림변화의 모니터링을 보다 용이하고 효율적으로 할 수 있을 것으로 기대된다.

  • PDF

고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구 (Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field)

  • 유희영;이경도;나상일;박찬원;박노욱
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.621-630
    • /
    • 2017
  • 이 논문에서는 고해상도 다중시기 위성영상을 이용한 밭작물 재배지 분류 가능성을 확인하기 위해 마늘과 양파 주산지를 대상으로 분류를 수행하였다. 마늘과 양파의 생육주기에 맞춰 영상을 수집하고 단일시기와 다양한 다중시기 자료의 조합으로 분류를 시도하였다. 단일시기 자료의 경우 파종이 모두 끝난 시기인 12월과 작물이 활발히 자라기 시작하는 3월 영상을 이용하였을 때 높은 분류 정확도를 보였다. 한편, 단일시기 자료 보다는 다중시기 자료를 이용하였을 때 더 높은 분류 정확도를 보였는데 자료의 수가 많은 것이 무조건 높은 분류 정확도를 반영하지는 않았다. 오히려 파종 시기 또는 파종 직후의 영상은 분류 정확도를 떨어뜨리는 역할을 하였고 마늘과 양파의 성장기인 3, 4, 5월 영상을 동시에 이용하여 분류하였을 때 가장 높은 분류 정확도를 얻었다. 따라서, 다중시기 위성영상을 이용하여 마늘과 양파를 분류하기 위해서는 작물 주요 성장기의 영상 확보가 매우 중요하다는 것을 확인할 수 있었다.

다중시기 위성영상을 이용한 3차원 웨이블릿 변환의 지구모니터링 응용가능성 연구 (The Applicability for Earth Surface Monitoring Based on 3D Wavelet Transform Using the Multi-temporal Satellite Imagery)

  • 류희영;이기원
    • 한국지구과학회지
    • /
    • 제32권6호
    • /
    • pp.560-574
    • /
    • 2011
  • 주기적이고 지속적으로 자료를 얻을 수 있는 위성영상은 지표면의 변화를 모니터링 하기 위한 매우 효과적인 자료이다. 위성영상을 이용한 기존의 변화탐지 연구는 두 시점의 지표 특성을 각각 분석해 서로 비교하여 변화를 밝혀내는 연구를 주로 해왔다. 그러나 최근에는 연속성을 갖는 다중 시기 위성영상으로부터 전체적인 경향이나 단기적인 변화를 찾아내는 연구에 관심이 높아지고 있다. 이 연구에서는 다중 시기 위성영상을 분석하기 위해 3차원 웨이블릿 변환 기반의 기법을 제안하고 테스트해보았다. 3차원 웨이블릿 변환을 이용하면 자료의 중요한 특성은 보존하면서 차원을 줄이는 것이 가능하다. 또한 다중 시기의 자료로부터 주요 패턴을 간추려 내고 공간, 시간적으로 인접한 주변 화소와의 관계를 파악할 수 있다. 연구 결과, 3차원 웨이블릿 변환 기법은 전체적인 경향성이나 특별한 변화 특성을 빠른 시간내에 밝혀내는 데 유용할 뿐만 아니라 분해 방향에 따라 각기 다른 정보를 제공해 주는 하위 밴드를 통해 새로운 정보를 얻을 수 있을 것으로 기대된다.

다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도 (Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data)

  • 정종철
    • 대한원격탐사학회지
    • /
    • 제18권2호
    • /
    • pp.71-79
    • /
    • 2002
  • 본 연구는 현장조사에서 얻어진 갯벌의 퇴적물 입자조성과 동일시기의 위성영상에서 추출된 반사치를 이용하여 함평만 갯벌의 입자분포도를 제시하였다. Landsat TM 자료에서 추출된 갯벌 입자조성에 따른 스팩트럼이 분석되었고, 7개의 위성영상은 ISODATA 와 K-MEANS 방법으로 분류되었다. 무감독분류된 결과는 현장관측치에 의해 분류 정확도가 평가되었으며, ISODATA와 K-MEANS 방법의 분류 정확도는 84.3%와 85.7%이다. 다중시기 위성영상 분류 결과를 검증하기 위해 현장조사 자료에 의해 분류된 1999년 5월 TM 영상을 참조자료로 하여 다중시기의 영상분류 결과를 비교하였다.

등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록 (Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution)

  • 한유경
    • 한국측량학회지
    • /
    • 제35권3호
    • /
    • pp.125-132
    • /
    • 2017
  • IKONOS, QuickBird, Kompsat-2 등 서로 다른 고해상도 광학 센서로 취득된 다중시기 영상은, 취득 당시의 센서 자세나 환경의 차이에 의해 영상 등록(image registration)을 수행한 이후에도 여전히 지역적인 지형 불일치가 존재한다. 등록오차(registration noise)라고도 불리는 이러한 지형 불일치는 고해상도 다중시기 영상을 이용하여 공간정보를 추출하는 다양한 활용분야의 정확도를 떨어뜨리는 방해 요인으로 작용한다. 반대로, 등록오차를 추출하여 이를 효과적으로 제거한다면 결과적으로는 다중시기 고해상도 영상을 이용하여 추출되는 공간정보의 정확도를 높일 수 있다. 이에 본 연구에서는 지배적인 등록오차는 주로 영상 내 객체의 경계를 따라서 존재한다는 가정 하에, 경계강도 영상을 이용하여 등록오차를 추출한다. 추출된 등록오차의 지역적 분포특성을 고려하여 고해상도 영상 간 지형 불일치를 최소화하는 정밀 등록 기법을 제안한다. 제안 기법을 평가하기 위해, 고해상도 다중시기 광학위성 영상을 이용하여 실험지역을 구성한다. 등록오차 기반의 정밀 등록 기법 적용 결과와 수동으로 수행한 등록 결과와의 정량적/정성적 비교평가를 통해 제안 기법의 우수성을 판단하고자 한다.

다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류 (Landcover classification by coherence analysis from multi-temporal SAR images)

  • 윤보열;김윤수
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.132-137
    • /
    • 2009
  • 본 연구는 지표투과력이 높은 L밴드 SAR 영상자료를 이용하여 토지피복 분류를 수행하였다. 다중시기 SAR 영상자료의 시간적 변이도 특성이 각기 다르게 나타나는 점을 이용하여 영상의 긴밀도 정보를 추출하고, 추출된 긴밀도 정보를 기반으로 분류를 수행하였다. 시간적 긴밀도 정보를 추출하기 위해 반복 패스를 통해 획득된 간섭 레이더(Interferometry SAR, 이하 InSAR) 기법을 이용하였고, 다중시기 영상에 대해 가장 최적의 기선거리에서 선정된 긴밀도 정보를 포함하는 영상을 선정하여 토지피복 분류작업을 수행한 결과 분류된 객체들 간에 명확하게 구분됨을 확인할 수 있었다.

  • PDF

랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화 (Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image)

  • 이승민;정종철
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.52-67
    • /
    • 2020
  • 최근 북극은 매년 영구 동토층이 녹아 눈으로 덮인 땅이 드러나고 있어 해당 지역 관리를 위한 공간정보가 필요하다. 한국의 국토지리정보원(NGII)은 극지방의 공간정보를 구축하여 극지공간정보 서비스를 제공하고 있으나, 식생 정보는 제공되지 않고 있으므로 식생 공간정보 구축을 위한 추가적인 연구가 필요하다. 본 연구에서는 북극 스발바르제도의 뉘올레순 지역에 대한 식생 분류를 수행하기 위해 다중 시기의 Sentinel-2 영상을 사용하였다. 전처리 단계에서는 다중 시기 Sentinel-2 영상으로부터 10개 밴드와 6가지 정규 지수식을 생성하였다. 영상 분류는 8개 속성에 대한 토지피복분류를 통해 전체 식생 영역을 추출하는 과정과 전체 식생 영역 내에서 다시 세분류를 수행하는 과정으로 이루어졌다. 영상 분류 알고리즘은 OOB(Out-Of-Bag)를 통해 정확도 평가 및 변수 중요도를 산정할 수 있는 랜덤포레스트를 사용하였다. 전체 정확도는 다시기 영상이 사용되었을 경우와 식생 지수가 추가되었을 경우의 이점을 확인하기 위해 사용된 영상 수에 따라 각각 정확도를 산정하였다. 단일시기의 Sentinel-2 영상은 전체 정확도가 77%였으나, 7개의 다중 시기 Sentinel-2 영상을 기반으로 학습하였을 때, 81%로 향상되었다. 또한, 식생 지수가 추가로 사용된 학습에서 전체 정확도가 약 83%로 향상되었다. 식생 분류 시 변수 중요도는 적색, 녹색, 단파적외선-1 밴드가 가장 높은 변수로 선정되었다. 본 연구는 극지방의 식생에 대한 분류를 수행할 시 입력특성을 최적화하는 기초 연구로 활용될 수 있을 것으로 판단된다.

LiDAR DEM과 다중시기에 촬영된 Landsat 영상을 이용한 낙동강 유역 내 토지피복 변화 탐지 (Land Cover Change Detection in the Nakdong River Basin Using LiDAR Data and Multi-Temporal Landsat Imagery)

  • 정윤재
    • 한국지리정보학회지
    • /
    • 제18권2호
    • /
    • pp.135-148
    • /
    • 2015
  • 본 연구는 LiDAR DEM(Digital Elevation Model)과 다중시기에 촬영된 Landsat 영상을 이용하여 4대강 정비사업이 시행되기 이전 및 이후에 낙동강 유역 내 발생한 토지피복 변화를 탐지 및 분석하기 위하여 수행되었다. 우선 LiDAR DEM으로부터 추출된 제방경계선을 이용하여 하천유역 폴리곤을 생성하고, 하천유역 폴리곤을 이용하여 다중시기에 촬영된 Landsat-5 TM(Thematic Mapper) 영상과 Landsat-8 OLI(Operational Land Imager) 영상으로부터 4개의 하천유역 영상을 각각 추출하였다. 그리고 영상분류방법을 적용하여 각 하천유역 영상으로부터 하천유역의 주요 토지피복인 하천, 나지, 초지를 각각 분류하였고, 전체 면적에서 각 토지피복이 차지하는 비율을 계산하였다. 다중시기에 촬영된 하천유역 영상으로부터 분류된 각 토지피복의 변화량을 분석한 결과, 4대강 정비사업이 시행되기 이전과 4대강 정비사업이 완공된 이후에는 계절의 변화에 의해 나지와 초지의 면적은 큰 폭으로 변화하였으나, 하천의 면적은 큰 변화가 없었다. 반면에 4대강 정비사업 전후로, 낙동강 유역 내 저수량의 증가로 인해 하천의 면적이 큰 폭으로 증가하였다. 본 논문은 LiDAR DEM과 4대강 정비사업 이전과 이후에 촬영된 위성영상들을 이용하여 4대강 정비사업으로 인해 발생한 하천 유역 내 토지피복 변화를 탐지할 수 있는 효과적인 방법을 제시하였다는데 의의가 있다.

도시성장 모니터링에 있어 다중시기 원격탐사자료의 활용 (Urban Growth Monitoring using Multi-temporal Remotely Sensed Data)

  • 이광재;김윤수;전갑호;전정남
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.568-574
    • /
    • 2003
  • 오늘날 급속하게 팽창하는 도시외형과 더불어 도심의 집약적이고 다양한 토지이용 패턴 속에서 계획적인 도시개발을 유도하기 위해서는 도시변화 추세 및 그 상세 정보를 주기적으로 모니터링 할 수 있는 종합적인 도시성장관리시스템이 요구된다 이에 앞서 본 연구에서는 토지이용변화를 바탕으로 한 도시성장 모니터링에 있어서 다중시기 원격탐사자료의 활용성과 그 적용범위를 명확하게 규명함과 동시에 향후 도시성장관리시스템 개발에 필요한 기초 자료를 효과적으로 생성하기 위하여 3단계로 구분하여 연구를 수행하였다. 우선 다중시기 원격탐사자료를 이용한 도시의 외형적 성장을 파악하고, 기존의 토지이용도 및 영상자료를 이용하여 시기별 토지이용도를 생성하고 이를 바탕으로 도시성장과정을 체계적으로 분석하였다. 또한 적용 결과를 통하여 기존자료의 최 신성을 확보하는 한편 막대한 예산을 투자하여 구축된 기존 토지이용자료를 원격탐사자료와 더불어 도시변화/성장 연구에 있어 보다 효과적으로 활용할 수 있는 방안을 제시하였다.

  • PDF