참고문헌
- Awad, M. and Khanna, R. (2015), Support Vector Regression, Efficient Learning Machines, pp. 67-80.
- Behnke, S. (2003), Hierarchical Neural Networks for Image Interpretation, Lecture Notes in Computer Science, Draft submitted to Springer-Verlag. Vol. 2766
- Bo, Q., Yang, W., Rijal, N., Xie, Y., Feng, U., and Zhang, J. (2018), Particle Pollution Estimation from Images Using Convolutional Neural Network and Weather Features, IEEE International Conference on Image Processing (ICIP), Athens, pp.3433-3437
- Chao, Z., Yan, J., Li, C., Rui, X., Liu, L., and Bie, R. (2017), Image-based air quality analysis using deep convolutional neural network, MM '16: Proceedings of the 24th ACM international conference on Multimedia, pp. 297-301.
- Cortes, C. and Vapnik, V. (1995), Support-vector networks, Machine learning, 20, no.3, 273-297. https://doi.org/10.1007/BF00994018
- Harrison, R.M., Deacon, A.R., Jones, M.R., and Appleby, R.S. (1997), Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.), Atmospheric Environment, Volume 31, Issues 24, December, pp. 4103-4117. https://doi.org/10.1016/S1352-2310(97)00296-3
- LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, and W., Jackel, L.D., (1989), Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, Volume 1, Issue 4, Dec., pp. 541 - 551. https://doi.org/10.1162/neco.1989.1.4.541
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), Gradient-based learning applied to document recognition. Proceedings of the IEEE, Vol. 86, No.11, pp. 2278-2324. https://doi.org/10.1109/5.726791
- Li, Y., Huang, J., and Luo, J. (2015), Using user generated online photos to estimate and monitor air pollution in major cities, Computer Vision and Pattern Recognition, arXi, https://arxiv.org/abs/1508.05028
- Liu, Ch., Tsow, F., Zou, Y., and Tao, N. (2016), Particle pollution estimation based on image analysis, PloS one, 11, no.2
- Lou, C., Liu, H., Li, Y., Peng, Y., Wang, J., and Dai, L. (2017), Relationships of relative humidity with PM 2.5 and PM 10 in the Yangtze River Delta, China, Environ Monit Assess, 2017 Oct 23;189(11):582, doi:10.1007/s10661-017-6281-z
- Mao, J., Phommasak, U., Watanabe, S. and Shioya, H. (2014), Detecting foggy images and estimating the haze degree factor, Journal of Computer Science & Systems Biology, 7:6
- Chakma, A., Vizena, B., Cao, T., Lin, J., and Zhang, J. (2017), On Estimating Air Pollution from Photos Using Convolutional Neural Network, IEEE International Conference on Image Processing (ICIP), pp.3949-3952, doi: 10.1109/ICIP.2017.8297023.
- Pope III, C.A., Ezzati, M., and Dockery D.W. (2009) Fine-Particulate Air Pollution and Life Expectancy in the United States, N Engl J Med, Volume 360, pp. 376-386. https://doi.org/10.1056/NEJMsa0805646
- Pope III, C.A. and Dockery D.W. (2012) Health Effects of Fine Particulate Air Pollution: Lines that Connect, Journal of the air & waste management association, Volume 56, Issues 6, pp. 709-742. https://doi.org/10.1080/10473289.2006.10464485
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., and Fei, L.F. (2014), ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, Vol. 115, Issue. 3, pp. 211-252. https://doi.org/10.1007/s11263-015-0816-y
- Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, arXiv, https://arxiv.org/abs/1409.1556
- Song, A.R., and Kim, Y.I. (2017), Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems, Korean Journal of Remote Sensing, v. 33 no. 6 pt. 2, pp. 1061-1073. (in Korean with English abstract)
- Tai, A.P.K., Mickley, L.J., and Jacob, D.J. (2010), Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change, Atmospheric Environment, 44, 32, pp. 3976-3984. https://doi.org/10.1016/j.atmosenv.2010.06.060
- Zhao, H., Zhang, W., Sun, H., and Xue, B. (2019), Embedded Deep Learning for Ship Detection and Recognition, Future Internet, 11(2), 53 https://doi.org/10.3390/fi11020053