DOI QR코드

DOI QR Code

Small Active Command Design for High Density DRAMs

  • Lee, Kwangho (Dept. of Computer Engineering, Won-Kwang University) ;
  • Lee, Jongmin (Dept. of Computer Engineering, Won-Kwang University)
  • Received : 2019.10.31
  • Accepted : 2019.11.20
  • Published : 2019.11.29

Abstract

In this paper, we propose a Small Active Command scheme which reduces the power consumption of the command bus to DRAM. To do this, we target the ACTIVE command, which consists of multiple packets, containing the row address that occupies the largest size among the addresses delivered to the DRAM. The proposed scheme identifies frequently referenced row addresses as Hot pages first, and delivers index numbers of small caches (tables) located in the memory controller and DRAM. I-ACTIVE and I-PRECHARGE commands using unused bits of existing DRAM commands are added for index number transfer and cache synchronization management. Experimental results show that the proposed method reduces the command bus power consumption by 20% and 8.1% on average in the close-page and open-page policies, respectively.

본 논문에서는 DRAM으로 전송되는 커맨드 버스의 전력 소모량을 감소시킬 수 있는 Small Active Command 기법을 제안한다. 이를 위해, DRAM으로 전달되는 주소 중 가장 큰 크기를 차지하는 Row 주소를 포함하고 다중패킷으로 구성된 ACTIVE 커맨드를 대상으로 한다. 제안된 Small Active Command 기법은 자주 참조되는 Row 주소를 Hot 페이지로 식별하고 메모리 컨트롤러와 DRAM에 적재된 작은 캐시(테이블)의 인덱스 번호를 Row 주소를 대신하여 단일 패킷으로 전달한다. 제안된 기법에서는 인덱스 번호 전달과 캐시 동기화 관리를 위해 기존 DRAM커맨드의 사용하지 않는 비트를 활용한 I-ACTIVE와 I-PRECHARGE 커맨드를 추가하였다. 시뮬레이션을 이용한 실험 결과 제안된 방식은 Close-page 정책과 Open-page 정책에서 각각 평균적으로 20%, 8.1%의 커맨드 버스 전력 소모량을 감소시켰다.

Keywords

References

  1. JEDEC Solid State Technology Association, Lower Double Data Rate 4 (LPDDR4), August 2014, https://www.jedec.org
  2. JEDEC Solid State Technology Association, High Bandwidth Memory (HBM), October 2013, https://www.jedec.org
  3. K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt, "Understanding and designing new server architectures for emerging warehouse-computing environments," Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA), pp. 315-326, Beijing, China, 2008.
  4. D. Meisner, B. T. Gold, and T. F. Wenisch, "PowerNap: Eliminating server idle power," Proceedings of the 14th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XIV), pp. 205-216, Washington DC, USA, 2009.
  5. Y. Lee, S. Kim, S. Hong, and J. Lee, "Skinflint DRAM System: Minimizing DRAM Chip Writes for Low Power," Proceedings of the 19th International Symposium on High Performance Computer Architecture (HPCA), pp. 25-34, Shenzhen, China, 2013.
  6. J. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber, "Future Scaling of Processor-memory Interfaces," Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC), pp. 1-12, Portland, USA, 2009.
  7. A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P. Jouppi, "Rethinking DRAM Design and Organization for Energy-constrained Multi-cores," Proceedings of the 37th annual International Symposium on Computer Architecture (ISCA), pp. 175-186, Saint-Malo, France, 2010.
  8. H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, "Mini-rank: Adaptive DRAM Architecture for Improving Memory Power Efficiency," Proceedings of the 41st IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 210-221, Lake Como, Italy, 2008.
  9. D. Shin, S. Park, S. Kim, and K. Park, "Adaptive Page Grouping for Energy Efficiency in Hybrid PRAM-DRAM Main Memory," Proceedings of the 2012 ACM Research in Applied Computation Symposium, pp. 395-402, San Antonio, USA, 2012.
  10. Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Gurumurthi, and Ada Gavrilovska, "Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence." In Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing (HPDC), pp. 37-48, New York, USA, 2019
  11. L. Ramos, E. Gorbatov, and R. Bianchini, "Page Placement in Hybrid Memory Systems," Proceedings of the International Conference on Supercomputing (ICS), pp. 85-95, Tucson, USA, 2011.
  12. I. Shin, "Hot/cold clustering for page mapping in NAND flash memory," in IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, pp. 1728-1731, November 2011. DOI:10.1109/TCE.2011.6131147
  13. B. Jacob, S. W. Ng, and D. Wang, "Memory Systems: Cache, DRAM, Disk," Morgan Kaufmann Publishers, 2007.
  14. Z. Zhang, Z. Zhu, and X. Zhang, "A Permutation-based Page Interleaving Scheme to Reduce Row-buffer Conflicts and Exploit Data Locality," Proceedings of the 33rd IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 32-41, Monterey, USA, 2000.
  15. N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, "The Gem5 Simulator," SIGARCH Computer Architecture News, Vol. 39, No 2, May 2011.
  16. N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, "CACTI 6.0: A Tool to Model Large Caches," HP Laboratories, 2009.
  17. J. L. Henning, "SPEC CPU2006 Benchmark Descriptions," ACM SIGARCH Computer Architecture News, pp. 1-17, September 2006. https://www.spec.org
  18. K. Ning and D. Kaeli, "Bus Power Estimation and Power-Efficient Bus Arbitration for System-on-a-Chip Embedded Systems," Proceedings of the 4th International Conference on Power-Aware Computer Systems (PACS), pp. 95-106, Portland, USA, 2004.
  19. D. Liu and C. Svensson, "Power Consumption Estimation in CMOS VLSI Chips," IEEE Journal of Solid-State Circuits, Vol. 29, Issue 6, pp. 663-670, 1994. DOI:10.1109/4.293111