DOI QR코드

DOI QR Code

Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

  • Liu, Weiji (School of Mechatronic Engineering, Southwest Petroleum University) ;
  • Zhu, Xiaohua (School of Mechatronic Engineering, Southwest Petroleum University) ;
  • Zhou, Yunlai (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Li, Tao (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Zhang, Xiangning (State Key laboratory of Mechanical Transmissions, Chongqing University)
  • Received : 2019.03.18
  • Accepted : 2019.07.04
  • Published : 2019.11.25

Abstract

The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

Keywords

Acknowledgement

Supported by : China Postdoctoral Science Foundation, SWPU, National Natural Science Foundation of China

References

  1. Ajibose, O.K., Wiercigroch, M., Akisanya, A.R. (2015), "Experimental studies of the resultant contact forces in drill bit-rock interaction", J. Mech. Sci., 91, 3-11. https://doi.org/10.1016/j.ijmecsci.2014.10.007.
  2. Block, G. and Jin, H. (2009), "Role of failure mode on rock cutting dynamics", SPE 124870, 2009 SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA.
  3. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", J. Rock Mech. Mining Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  4. Da Fontoura, S. A. B., Inoue, N., Martinez, I. M. R., Cogollo, C. and Curry, D.A. (2011), "Rock mechanics aspects of drill bit rock interaction", 12th ISRM Congress International Society for Rock Mechanics, Beijing, China, October.
  5. Fang, Z. and Harrison, J.P. (2002), "Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions", J. Rock Mech. Mining Sci., 39(02), 459-476. https://doi.org/10.1016/S1365-1609(02)00036-9.
  6. Franca, L.F.P. and Lamine, E. (2010), "Cutting Action of Impregnated Diamond Segments: Modelling And Experimental Validation", The 44th US Rock Mechanics Symposium and 5th US-Canada Symposium, Salt Lake City, Utah, USA.
  7. Ghazvinian, E., Diederichs, M.S. and Quey, R. (2014), "3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing", J. Rock Mech. Geotech. Eng., 6, 506-521. https://doi.org/10.1016/j.jrmge.2014.09.001.
  8. Huang, H., Detournay, E., Bellier, B. (1999), "Discrete element modelling of rock cutting", Rock Mechanics for Industry, 1(1), 123-130.
  9. Huang, H., Lecampion, B. and Detournay, E. (2013), "Discrete element modeling of tool-rock interaction I: rock cutting", J. Numeric. Anal. Methods Geomech., 37(13), 1913-1929. https://doi.org/10.1002/nag.2113.
  10. Haftani, M., Bohloli, B., Moosavi, M., Nouri, A., Moradi, M. and Javan, M.R.M. (2013), "A new method for correlating rock strength to indentation tests", J. Petroleum Sci. Eng., 112, 24-31. https://doi.org/10.1016/j.petrol.2013.11.027.
  11. Hoseinie, S.H., Ataei, M. and Mikaiel, R. (2012), "Comparison of some rock hardness scales applied in drillability studies", Arabian J. Sci. Eng., 37(5), 1451-1458. ttps://doi.org/10.1007/s13369-012-0247-9.
  12. He, X. and Xu, C. (2015), "Discrete element modelling of rock cutting: from ductile to brittle transition", J. Numeric. Anal. Methods Geomech., 39, 1331-1351. https://doi.org/10.1002/nag.2362.
  13. Innaurato, N., Oggeri, C., Oreste, P.P. and Vinai, R. (2007), "Experimental and Numerical Studies on Rock Breaking with TBM Tools under High Stress Confinement", Rock Mech. Rock Eng., 40(5), 429-451. https://doi.org/10.1007/s00603-006-0109-4.
  14. Jia, L., Chen, M., Zhang, W., Xu, T., Zhou, Y., Hou, B. and Jin, Y. (2013), "Experimental study and numerical modeling of brittle fracture of carbonate rock under uniaxial compression", Mech. Res. Communications, 50, 58-62. https://doi.org/10.1016/j.mechrescom.2013.04.002.
  15. Jensen, R. P., Bosscher, P. J., Plesha, M. E. and Edil, T. B. (1999), "DEM simulation of granular media-structure interface: effects of surface roughness and particle shape", J. Numberic Anal. Method Geomech., 23(6), 531-547. https://doi.org/10.1002/(SICI)1096-9853(199905)23:6%3C531::AIDNAG980%3E3.0.CO;2-V.
  16. Kou, S. Q., Huang, Y., Tan, X. C. and Lindqvist, P. A. (1998), "Identification of the governing parameters related to rock indentation depth by using similarity analysis", Eng. Geology, 49(3), 261-269. https://doi.org/10.1016/S0013-7952(97)00057-4.
  17. Kasada, R., Takayama, Y., Yabuuchi, K., & Kimura, A. (2011), "A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques", Fusion Eng. Design, 86(9-11), 2658-2661. https://doi.org/10.1016/j.fusengdes.2011.03.073.
  18. Kahraman, S., Fener, M. and Kozman, E. (2012), "Predicting the compressive and tensile strength of rocks from indentation hardness index", J. Southern African Institute Mining Metallurgy, 112(5), 331-339.
  19. Ledgerwood, L.W. (2017), "PFC Modeling of Rock Cutting Under High Pressure Conditions", Proceedings of the 1st Canada-US Rock Mechanics Symposium, Vancouver, Canada. May.
  20. Lei, S.T. and Kaitkay, P. (2003), "Distinct element modeling of rock cutting under hydrostatic pressure", Key Engineering Materials, 250, 110-117. https://doi.org/10.4028/www.scientific.net/KEM.250.110.
  21. Liu, H.Y., Kou, S.Q., Lindqvist, P.A. and Tang, C.A. (2002), "Numerical simulation of the rock fragmentation process induced by indenters", J. Rock Mech. Mining Sci., 39(4), 491-505. https://doi.org/10.1016/S1365-1609(02)00043-6
  22. Liu, H.Y., Kou, S.Q. and Lindqvist, P.A. (2008), "Numerical studies on bit-rock fragmentation mechanisms", J. Geomech., 8(1), 45-67. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:1(45).
  23. Liu, W., Zhu, X. and Jing, J. (2018a), "The analysis of ductile-brittle failure mode transition in rock cutting", J. Petroleum Sci. Eng., 163, 311-319. https://doi.org/10.1016/j.petrol.2017.12.067.
  24. Liu, W., Zhu, X., Zhou, Y.L., Mei, L., Meng, X. and Jiang, C. (2018b), "The ROP mechanism study in hard formation drilling using local impact method", Struct. Eng. Mech., 68(1), 95-101. https://doi.org/10.12989/sem.2018.68.1.095.
  25. Liu, W., Qian, X., Li, T., Zhou, Y. and Zhu, X. (2019), "Investigation of the tool-rock interaction using Drucker-Prager failure criterion", J. Petroleum Sci. Eng., 173, 269-278. https://doi.org/10.1016/j.petrol.2018.09.064.
  26. Lin, Q.B., Cao, P., Li, K.H., Cao, R.H., Zhou, K.P. and Deng, H. W. (2018), "Experimental study on acoustic emission characteristics of jointed rock mass by double disc cutter", J. Central South U., 25(2), 357-367. https://doi.org/10.1007/s11771-018-3742-7.
  27. Mendoza, J.A., Gamwo, I.K., Zhang, W. and Lin, J.S. (2010), "Discrete element modeling of rock cutting usng crushable particles", Proceedings of the 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, Utah, USA. June.
  28. Mendoza, J.A., Gamwo, I.K., Zhang, W. and Lin, J.S. (2011), "Considerations for discrete modeling of rock cutting", Proceedings of the 45th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, USA. June.
  29. Menezes, P. L., Lovell, M. R., Avdeev, I. V., Lin, J. S. and Higgs, C.F. (2014), "Studies on the formation of discontinuous chips during rock cutting using an explicit finite element model", J. Adv. Manufact. Technol., 70(1-4), 635-648. https://doi.org/10.1007/s00170-013-5309-y.
  30. Ma, H., Yin, L. and Ji, H. (2011), "Numerical study of the effect of confining stress on rock fragmentation by TBM cutters", J. Rock Mech. Mining Sci., 48(6), 1021-1033. https://doi.org/10.1016/j.ijrmms.2011.05.002.
  31. Moon, T. and Oh, J. (2012), "A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method", Rock Mech. Rock Eng., 45(5), 837-849. https://doi.org/10.1007/s00603-011-0180-3.
  32. Ma, H., Yin, L. and Ji, H. (2011), "Numerical study of the effect of confining stress on rock fragmentation by TBM cutters", J. Rock Mech. Mining Sci., 48(6), 1021-1033. https://doi.org/10.1016/j.ijrmms.2011.05.002.
  33. Onate, E. and Rojek, J. (2004), "Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems", Comput. Methods Appl. Mech. Eng., 193, 3087-3128. https://doi.org/10.1016/j.cma.2003.12.056.
  34. Menezes, P.L., Lovell, M.R., Avdeev, I.V. and Higgs III, C.F. (2014), "Studies on the formation of discontinuous rock fragments during cutting operation", J. Rock Mech. Mining Sci., 71, 131-142. https://doi.org/10.1016/j.ijrmms.2014.03.019.
  35. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", J. Rock Mech. Mining Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  36. Richard, T. (1999), "Determination of rock strength from cutting tests", M.Sc. Dissertation, University of Minnesota, USA.
  37. Rojek, J., Onate, E., Labra, C. and Kargl, H. (2011), "Discrete element simulation of rock cutting", J. Rock Mech. Mining Sci., 48(6), 996-1010. https://doi.org/10.1016/j.ijrmms.2011.06.003.
  38. Su, O. and Akcin, N.A. (2011), "Numerical simulation of rock cutting using the discrete element method", J. Rock Mech. Mining Sci., 48(3), 434-442. https://doi.org/10.1016/j.ijrmms.2010.08.012.
  39. Stavropoulou, M. (2006), "Modeling of small-diameter rotary drilling tests on marbles", J. Rock Mech. Mining Sci., 43, 1034-1051. https://doi.org/10.1016/j.ijrmms.2006.03.008.
  40. Thomas, P.A. and Bray, J.D. (1999), "Capturing nonspherical shape of granular media with disk clusters", J. Geotech. Geoenviron. Eng., 125(3), 169-178. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(169).
  41. Wang, S.Y., Sloan, S.W., Liu, H.Y. and Tang, C.A. (2011), "Numerical simulation of the rock fragmentation process induced by two drill bits subjected to static and dynamic (impact) loading", Rock Mech. Rock Eng., 44(3), 317-332. https://doi.org/10.1007/s00603-010-0123-4.
  42. Yu, H.Z., Ruan, H.N. and Chu, W.J. (2013), "Particle flow code modeling of shear behavior of rock joints", Chinese J. Rock Mech. Eng., 7, 1482-1490.
  43. Zhu, X., Liu, W. and He, X. (2017), "The investigation of rock indentation simulation based on discrete element method", KSCE J. Civil Eng., 21(4), 1201-1212. https://doi.org/10.1007/s12205-016-0033-4.
  44. Zhou, Y. and Lin, J.S. (2013), "On the critical failure mode transition depth for rock cutting", J. Rock Mech. Mining Sci., 62, 131-137. https://doi.org/10.1016/j.ijrmms.2013.05.004.