DOI QR코드

DOI QR Code

Theoretical and experimental modal responses of adhesive bonded T-joints

  • Kunche, Mani Chandra (Department of Mechanical Engineering, NIT Rourkela) ;
  • Mishra, Pradeep K. (Department of Mechanical Engineering, BPUT) ;
  • Nallala, Hari Babu (Department of Mechanical Engineering, NIT Rourkela) ;
  • Hirwani, Chetan K. (Department of Mechanical Engineering, Aditya Engineering College) ;
  • Katariya, Pankaj V. (Department of Mechanical Engineering, NIT Rourkela) ;
  • Panda, Subhransu (Department of Mechanical Engineering, BPUT) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, NIT Rourkela)
  • 투고 : 2018.11.23
  • 심사 : 2019.04.05
  • 발행 : 2019.11.25

초록

The modal frequency responses of adhesive bonded T-joint structure have been analyzed numerically and verified with own experimental data. For this purpose, the damped free frequencies of the bonded joint have been computed using a three-dimensional finite element model via ANSYS parametric design language (APDL) code. The practical relevance of the joint structure analysis has been established by comparing the simulation data with the in-house experimental values. Additionally, the influences of various geometrical and material parameters on the damped free frequency responses of the joint structure have been investigated and final inferences discussed in details. It is observed that the natural frequency values increase for the higher aspect ratios of the joint structure. Also, the joint made up of Glass fiber/epoxy with quasi-isotropic fiber orientation indicates more resistance towards free vibration.

키워드

참고문헌

  1. A.M. APDL. (2017), Release 17.2, ANSYS Ltd.
  2. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.
  3. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
  4. Adams, R.D., Comyn, J. and Wake, W.C. (1997), Structural adhesive joints in engineering, Springer Science & Business Media.
  5. Apalak, K.M., Ekici, R., Yildirim, M. and Erkaya, S. (2009), "Determination of structural damping and optimal vibration control of an adhesively-bonded double containment cantilever joint", J. Adhes Sci. Technol., 23, 339-359. https://doi.org/10.1163/156856108X383538.
  6. Apalak, M.K., Ekici, R. and Yildirim, M. (2008), "Free vibration analysis and optimal design of an adhesively bonded double containment cantilever joint", J. Scientific Ins. Res., 67, 797-806.
  7. Apalak, Z.G., Apalak, M.K. and Davies, R. (1996), "Analysis and design of tee joints with double support", Int. J. Adhes. Adhes., 16(3), 187-214. https://doi.org/10.1016/0143-7496(96)87013-8.
  8. Arani, A.G., Mosayyebi, M., Kolahdouzan, F., Kolahchi, R. and Jamali, M. (2016), "Refined zigzag theory for vibration analysis of viscoelastic functionally graded carbon nanotube reinforced composite microplates integrated with piezoelectric layers", Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 231(13), 2464-2478. https://doi.org/10.1177/0954410016667150.
  9. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  10. Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
  11. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
  12. Bellifa, H., Bakora, A., Tounsi, A. and Hassan, S. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
  13. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018f), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
  14. Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661.
  15. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  16. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Bedia, E.A.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825.
  17. Cheng, L. and Nicolas, J. (1992), "Free vibration analysis of a cylindrical shell-circular plate system with general coupling and various boundary conditions", J. Sound Vib., 155(2), 231-247. https://doi.org/10.1016/0022-460X(92)90509-V.
  18. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  19. Civalek, O. (2017), "Vibration of laminated composite panels and curved plates with different types of FGM composite constituent", Compos. Part B: Eng., 122, 89-108. https://doi.org/10.1016/j.compositesb.2017.04.012.
  20. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2007), Concepts and applications of finite element analysis, John Wiley & Sons.
  21. Da Silva, L.F.M. and Adams, R.D. (2002), "The strength of adhesively bonded T-joints", Int. J. Adhes. Adhes, 22(4), 311-315. https://doi.org/10.1016/S0143-7496(02)00009-X.
  22. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  23. El Meiche, N., Tounsi, A., Ziane, N. and Mechab, I. (2011a), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004.
  24. El-Haina, F., Bakora, A., Bousahla, A.A, Tounsi A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/sem.2017.63.5.585.
  25. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A., and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
  26. Ghoneam, S.M., Hamada, A.A. and El-Elamy, M.I. (2009) "Experimental and analytical investigations of the dynamic analysis of adhesively bonded joints for composite structures", Solid State Phenom., 147, 663-675. https://doi.org/10.4028/www.scientific.net/SSP.147-149.663.
  27. Grant, L.D.R., Adams, R.D. and Da Silva, L.F.M. (2009), "Experimental and numerical analysis of T-peel joints for the automotive industry", J. Adhes Sci. Technol., 23(2), 317-338. https://doi.org/10.1163/156856108X383529.
  28. Grimes, R.G., Lewis, J.G. and Simon, H.D. (1994), "A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems", SIAM J. Matrix Anal. A, 15(1), 228-272. https://doi.org/10.1137/S0895479888151111.
  29. Gunes, R., Apalak, M.K. and Yildirim, M. (2007), "The free vibration analysis and optimal design of an adhesively bonded functionally graded single lap joint", Int. J. Mech. Sci., 49, 479-499. https://doi.org/10.1016/j.ijmecsci.2006.09.010.
  30. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Bedia, E.A. (2011b), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9.
  31. He, X. (2010), "Recent development in finite element analysis of clinched joints", Int. J. Adv. Manuf. Tech., 48, 607-612. https://doi.org/10.1007/s00170-009-2306-2.
  32. He, X. and Oyadiji, S.O. (2001), "Influence of adhesive characteristics on the transverse free vibration of single lapjointed cantilevered beams", J Mater Process Technol., 119(1-3), 366-373. https://doi.org/10.1016/S0924-0136(01)00936-0.
  33. Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Low-dimensional Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037.
  34. Hu, P., Shao, Q., Li, W. and Han, X. (2012), "Experimental and numerical analysis on load capacity and failure process of Tjoint: Effect produced by the bond-line length", Int. J. Adhes Adhes, 38, 17-24. https://doi.org/10.1016/j.ijadhadh.2012.05.007.
  35. Jones, R.M. (2014), "Mechanics of composite materials", CRC press.
  36. Ju, F., Lee, H.P. and Lee, K.H. (1995), "Finite element analysis of free vibration of delaminated composite plates", Compos. Eng., 5, 195-209. https://doi.org/10.1016/0961-9526(95)90713-L.
  37. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  38. Kaya, A., Tekelioglu, M.S. and Findik, F. (2004), "Effects of various parameters on dynamic characteristics in adhesively bonded joints", Mater. Lett., 58(27-28), 3451-3456. https://doi.org/10.1016/j.matlet.2004.07.001.
  39. Khalili, S.M.R. and Ghaznavi, A. (2011), "Numerical analysis of adhesively bonded T-joints with structural sandwiches and study of design parameters", Int. J. Adhes Adhes, 31(5), 347-356. https://doi.org/10.1016/j.ijadhadh.2010.12.005.
  40. Kim, D.I., Jung, S.C., Lee, J.E. and Chang, S.H. (2006), "Parametric study on design of composite-foam-resin concrete sandwich structures for precision machine tool structures", Compos. Struct., 75(1-4), 408-414. https://doi.org/10.1016/j.compstruct.2006.04.022.
  41. Ko, T.C., Lin, C.C. and Chu, R.C. (1995), "Vibration of bonded laminated lap-joint plates using adhesive interface elements", J. Sound Vib., 184(4), 567-583. https://doi.org/10.1006/jsvi.1995.0334.
  42. Li, W., Blunt, L. and Stout, K.J. (1999), "Stiffness analysis of adhesive bonded Tee joints", Int. J. Adhes Adhes, 19(4), 315-320. https://doi.org/10.1016/S0143-7496(99)00007-X.
  43. Lin, C.C. and Ko, T.C. (1997), "Free vibration of bonded plates", Comput. Struct., 64(1-4), 441-452. https://doi.org/10.1016/S0045-7949(96)00133-2.
  44. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157.
  45. Meradjah, M., Bouakkaz, K., Zaoui, F.Z. and Tounsi, A. (2018h), "A refined quasi-3D hybrid-type higher order shear deformation theory for bending and free vibration analysis of advanced composites beams", Wind Struct., 27(4), 269-282. https://doi.org/10.12989/was.2018.27.4.269.
  46. Mortensen, F. and Thomsen, O.T. (2002), "Coupling effects in adhesive bonded joints", Compos. Struct., 56, 165-174. https://doi.org/10.1016/S0263-8223(02)00002-8.
  47. Phillips, H.J. and Shenoi, R.A. (1998), "Damage tolerance of laminated tee joints in FRP structures", Compos. Part A Appl. Sci. Manuf., 29(4), 465-478. https://doi.org/10.1016/S1359-835X(97)00081-X.
  48. Reddy, J.N. (1979), "Free vibration of antisymmetric, angle-ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4.
  49. Saito, H. and Tani, H. (1984), "Vibrations of bonded beams with a single lap adhesive joint", J. Sound Vib., 92(2), 299-309. https://doi.org/10.1016/0022-460X(84)90563-7.
  50. Sharifi, M., Kolahchi R. and Bidgoli, M.R. (2018), "Dynamic analysis of concrete beams reinforced with $TiO_2$ nano particles under earthquake load", Wind Struct., 26(1), 43-57. https://doi.org/10.12989/was.2018.26.1.001.
  51. Shenoi, R.A. and Violette, F.L.M. (1990), "A study of structural composite tee joints in small boats", J. Compos. Mater., 24, 644-666. https://doi.org/10.1177/002199839002400604.
  52. Tenek, L.H., Henneke II, E.G. and Gunzburger, M.D. (1993), "Vibration of delaminated composite plates and some applications to non-destructive testing", Compos. Struct., 23(3), 253-262. https://doi.org/10.1016/0263-8223(93)90226-G.
  53. Theotokoglou, E.E. (1997), "Strength of composite T-joints under pull-out loads", J. Reinf. Plast Compos., 16, 503-518. https://doi.org/10.1177/073168449701600602.
  54. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.
  55. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  56. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519.

피인용 문헌

  1. A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates vol.75, pp.2, 2019, https://doi.org/10.12989/sem.2020.75.2.157