DOI QR코드

DOI QR Code

Design of an Actuator Using Electro-active Polymer (EAP) Actuator with Composite Electrodes

복합재료 전극을 가진 전기활성고분자 구동기의 설계

  • Received : 2019.09.17
  • Accepted : 2019.10.22
  • Published : 2019.10.31

Abstract

The cell culture process under in vitro condition is much different from the actual human body environment. Therefore, in order to precisely simulate the human body environment, a dynamic cell culture device capable of delivering mechanical stimulation to cells is essential. However, conventional dynamic cell culture devices require relatively complicated devices such as tubes, pumps, and motors, and the mechanical stimuli delivered is also simple. In this study, an electro-active polymer actuator as a driving component is introduced to design simply driven dynamic cell culture device without complicated components. The device is capable of delivering relatively complex mechanical stimuli to the cells.

정적인 상태인 체외 환경(in vitro)에서의 세포배양 과정은 실제 생체 내 환경에서의 세포발달과정과는 많은 차이가 존재한다. 따라서, 체내 환경의 정밀한 모사를 위해서는, 기계적인 자극을 세포에 전달하여 줄 수 있는 동적 세포배양장치가 필수적이다. 하지만 기존의 동적 세포배양장치에는 튜브, 펌프, 모터 등의 비교적 복잡한 장치들을 필요로 하였으며, 전달되는 기계적 자극도 단순한 형태였다. 본 연구에서는 단순한 장치로 구동되는 동적 세포배양장치를 위하여 전기활성고분자(EAP) 구동기를 동력원으로 하는 소형 동적 세포배양장치를 설계하였다. 이 장치는 다양한 기계적 자극을 세포에 전달하는 것이 가능하다.

Keywords

References

  1. Dhein, S., Schreiber, A., Steinbach, S., Apel, D., Salameh, A., Schlegel, F., Kostelka, M., Dohmen, P.M., and Mohr, F.W., "Mechanical Control of Cell Biology. Effects of Cyclic Mechanical Stretch on Cardiomyocyte Cellular Organization," Progress in Biophysics & Molecular Biology, Vol. 115, 2014, pp. 93-102. https://doi.org/10.1016/j.pbiomolbio.2014.06.006
  2. Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Ignatius, A., and Claes, L., "Dynamic Cell Stretching Increases Human Osteoblast Proliferation and CICP Synthesis but Decreases Osteocalcin Synthesis and Alkaline Phosphatase Activity," Journal of Biomechanics, Vol. 33, 2000, pp. 45-51. https://doi.org/10.1016/S0021-9290(99)00171-2
  3. Jung, K.C., Jeon, G.J., Bae, J.H., and Chang, S.H., "Flexible Cell Culture Device Made of Membrane-type Silicone Composites for Simulating Human Body," Composite Structures, Vol. 134, 2015, pp. 36-43. https://doi.org/10.1016/j.compstruct.2015.08.054
  4. Dhein, S., Schreiber, A., Steinbach, S., Apel, D., Salameh, A., Schlegel, F., Kostelka, M., Dohmen, P.M., and Mohr, F.W., "Mechanical Control of Cell Biology. Effects of Cyclic Mechanical Stretch on Cardiomyocyte Cellular Organization," Progress in Biophysics & Molecular Biology, Vol. 115, 2014, pp. 93-102. https://doi.org/10.1016/j.pbiomolbio.2014.06.006
  5. Yung, Y.C., Vandenburgh, H., and Mooney, D.J., "Cellular Strain Assessment Tool (CSAT): Precision-controlled Cyclic Uniaxial Tensile Loading," Journal of Biomechanics, Vol. 42, 2009, pp. 178-182. https://doi.org/10.1016/j.jbiomech.2008.10.038
  6. Lam, M.T., Clem, W.C., and Takayama, S., "Reversible Ondemand Cell Alignment Using Reconfigurable Microtopography," Biomaterials, Vol. 29, No. 11, 2008, pp. 1705-1712. https://doi.org/10.1016/j.biomaterials.2007.12.010
  7. Li, B., Lin, Z.J., Ryu, S.R., and Lee, D.J., "Effects of Thickness, Elastomer Types and Thinner Content on Actuation Performance of Electro Active Dielectric Elastomers," Composites Research, Vol. 27, No. 1, 2014, pp. 25-30. https://doi.org/10.7234/composres.2014.27.1.025
  8. Brochu, P., and Pei, Q., "Advances in Dielectric Elastomers for Actuators and Artificial Muscles," Macromolecular Rapid Communications, Vol. 31, No. 1, 2010, pp. 10-36. https://doi.org/10.1002/marc.200900425
  9. Ariano, P., Accardo, D., Lombardi, M., Bocchini, S., Draghi, L., De Nardo, L., and Fino, P., "Polymeric Materials as Artificial Muscles: An Overview," Journal of Applied Biomaterials & Functional Materialsd, Vol. 13, No. 1, 2015, pp. 1-9. https://doi.org/10.5301/jabfm.5000184
  10. Han, S.H., and Hwang, H.Y., "Fabrication of Microstructures with Nanocomposites by Capillary Effect," Composites Research, Vol. 31, No. 4, 2018, pp. 171-176.
  11. Kim, S.H., Lee, S., Ahn, D., and Park, J.Y., "PDMS Double Casting Method Enabled by Plasma Treatment and Alcohol Passivation," Sensors and Actuators B: Chemical, Vol. 293, 2019, pp. 115-121. https://doi.org/10.1016/j.snb.2019.04.145

Cited by

  1. Dynamic cell culture device using electroactive polymer actuators with composite electrodes to transfer in-plane mechanical strain to cells vol.8, pp.3, 2019, https://doi.org/10.1007/s40684-020-00238-y