DOI QR코드

DOI QR Code

A Basic Study on Particle Distribution Characteristics of Rotary Mist Spraying Device

회전형 미세입자 분무장치의 입자 분포 특성에 관한 기초 연구

  • Ryou, Young Sun (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Jang, Jae Kyung (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Kim, Hyung Kweon (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Kim, Young Hwa (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Lee, Tae Suk (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Oh, Sung Sik (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Jin, Byung Ok (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Oh, Gyoung Min (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA) ;
  • Kang, Tae Kyoung (Dept. of Agricultural Engineering, National Institue of Agricultural Science, RDA)
  • 유영선 (국립농업과학원 농업공학부) ;
  • 장재경 (국립농업과학원 농업공학부) ;
  • 김형권 (국립농업과학원 농업공학부) ;
  • 김영화 (국립농업과학원 농업공학부) ;
  • 이태석 (국립농업과학원 농업공학부) ;
  • 오성식 (국립농업과학원 농업공학부) ;
  • 진병옥 (국립농업과학원 농업공학부) ;
  • 오경민 (국립농업과학원 농업공학부) ;
  • 강태경 (국립농업과학원 농업공학부)
  • Received : 2019.09.10
  • Accepted : 2019.10.30
  • Published : 2019.10.30

Abstract

The purpose of this study is to analyze the distribution characteristics of mist spray particle size by devising a rotary mist spraying device to develop the evaporative salt water desalination system. The rotary mist spraying device was consisted of a BLDC sirocco fan, a spinning fan, a fan fixed shaft and a salt water supply device etc. In this study we analyzed the characteristics of spray particle size and distribution according to the variation of sirocco fan surface roughness(Ra, ${\mu}m$), revolutions(rpm) and salt water flow rate(mL/min). When sirocco fan surface roughness(Ra) was in the range of $0.27{\sim}7.65{\mu}m$, the spray particle size was $0.117{\sim}1.360{\mu}m$. And then more than 90% of spray particles were found to be less than $0.50{\mu}m$. When sirocco fan surface roughness(Ra) was in the range of $12.70{\sim}22.84{\mu}m$, the spray particle size was $2.51{\sim}184.79{\mu}m$ and more than 98% of spray particles were found to be less than $13.59{\mu}m$. To analyze the effect of fan rotation speed on the size and distribution of spray particles, when surface roughness Ra was fixed $0.27{\mu}m$ and fan rotation speed and salt water flow rate was respectively changed at 3,800~5,600 rpm and 2.77~8.28 mL/min, spray particle size was $0.314{\sim}0.541{\mu}m$. And when salt water flow rate was 9.74 mL/min and fan rotation speed was 3,800~5,200 rpm, spray particle size was in the range of $29.29{\sim}341.46{\mu}m$ and in case of 5,600 rpm more than 98.23% of spray particles were in the range of $2.51{\sim}13.59{\mu}m$.

이 연구에서는 염수를 증발냉각법을 이용하여 담수를 생산할 목적으로 회전형 미세입자 분무장치를 설계 제작하여 회전체의 표면조도, BLDC 시로코 팬의 회전수 그리고 염수 공급량의 변화에 따른 분무입자의 크기와 분포 특성을 실험적으로 분석하고자 하였다. 회전체의 표면조도 $Ra=0.27{\sim}7.65{\mu}m$인 경우 분무입자 크기는 $0.117{\sim}1.360{\mu}m$ 였고, 분무입자의 90% 가 $0.50{\mu}m$ 이하인 것으로 나타났다. $Ra=12.70{\sim}22.84{\mu}m$인 경우에는 분무입자 크기가 $2.51{\sim}184.79{\mu}m$의 범위에 분포하였고, 분무입자의 98%가 $13.59{\mu}m$ 이하인 것으로 나타났다. BLDC 시로코 팬의 회전수가 분무입자의 크기와 분포에 미치는 영향을 분석하기 위하여 표면조도 $Ra=0.27{\mu}m$로 고정한 상태에서 염수 공급량을 일정하게 유지하면서 팬의 회전수를 3,800~5,600rpm 로 변화시켜가며 실험을 수행한 결과 염수 공급량이 2.77~8.28mL/min 인 경우에는 분무입자의 크기가 $0.314{\sim}0.541{\mu}m$의 범위에 분포하였다. 또한 염수공급량이 9.74mL/min 이고 회전수가 5,600rpm인 경우에는 분무입자의 98.23% 이상이 $2.51{\sim}13.59{\mu}m$의 범위에 분포하였다.

Keywords

References

  1. Amsden, R. C., 1962. Reducing the evaporation of sprays. Agri. Aviat. 4: 88-93.
  2. Brandon, A. M. 2008. Waste to water: a low energy water distillation method. Decalination 220: 502-505.
  3. Brett, A. 2008. Effective scale control for seawater RO operating with high feed water pH and temperature. Decalination 220: 295-304.
  4. Kim, K. D., Y. S. Ha, K. M. Lee, D. H. Park, S. G. Kwon, J. M. Park, and S. W. Chung. 2010. Development of temperature control technology of root zone using evaporative cooling methods in the strawberry hydroponics. J. Bio-Env Con. 19(4): 184-188(in Korean).
  5. Kim, K. S., M. K. Kim, and I. H. Yu. 1999. Actual state of practical use and cooling effect of evaporative cooling system. J. Bio. Fac. 8(4): 281-287(in Korean).
  6. Matthews, G. A., 1992. Pesticide application methods 2nd edition. New York. USA.
  7. Nam, S.W., 1998. Adaptable of evaporative cooling system for greenhouse to the weather conditions of Korea. J. Bio. Fac. 7(4): 283-289(in Korean).
  8. Nam, S. W. and Y. S. Kim. 2011. Greenhouse cooling using air duct and integrated fan and pad system. J. Bio-Env Con. 20(3): 176-181(in Korean).
  9. Lee, H. S. 2011. Analysis of heating and desalination cycle using low temperature seawater. Journal of the Korean Society of Marine Environmental engineering. 14(4): 301-306(in Korean). https://doi.org/10.7846/JKOSMEE.2011.14.4.301
  10. Song, C. S. 2014. A study on the required energy of a thermal type desalination plant. Journal of the Korean Society of Marine engineering. 38(9): 1094-1100(in Korean). https://doi.org/10.5916/jkosme.2014.38.9.1094
  11. Yoon, Y. C., W. M. Suh, and J. Y. Lee. 1998. Spray characteristics of spray nozzles used for greenhouse cooling. J. Bio. Fac. 7(4): 298-310(in Korean).