DOI QR코드

DOI QR Code

A Review on the Depositional Age and Provenance of the Taean Formation in the Western Gyeonggi Massif

서부 경기육괴에 분포하는 태안층의 퇴적시기와 기원지에 대한 고찰

  • Choi, Taejin (Department of Energy and Resources Engineering, Chosun University) ;
  • Park, Seung-Ik (Department of Geology, School of Earth System Science, Kyungpook National University)
  • 최태진 (조선대학교 에너지자원공학과) ;
  • 박승익 (경북대학교 지구시스템과학부)
  • Received : 2019.10.11
  • Accepted : 2019.10.20
  • Published : 2019.10.28

Abstract

Various studies regarding the sedimentary environment, depositional age, provenance, and metamorphic history have been carried out on the Taean Formation in the western part of Gyeonggi Massif, since the unique detrital zircon age pattern was revealed. This review paper introduces the previous researches on the Taean Formation and discusses the depositional age and provenance. The Taean Formation was traditionally regarded as a Precambrian stratigraphic unit, but recently it is interpreted to be a middle or upper Paleozoic formation due to the occurrence of large amounts of Early to Middle Paleozoic detrital zircons. The Taean Formation consists of metasandstone, argillaceous schist, and phyllite which are mainly made up of quartz and mica. The protoliths are interpreted as turbidites deposited in deep sea fan environment. The Taean Formation has been interpreted to be deposited between the Devonian to Triassic ages given the age differences between detrital zircons and intrusive rocks. There are two opinions that the deposition age is close to the Devonian or the Permian period. The provenance of this formation is supposed to be South China block, Chinese collisional belt, or Gyeonggi Massif. Given the available detrital zircon ages of the Taean Formation and other Korean (meta)sedimentary rocks, the Taean Formation shares major source rocks with Yeoncheon Group and Pibanryeong Unit of the Okcheon Supergroup, but their source regions are not entirely consistent. Considering the existing hypotheses about the depositional timing and provenance, we put weight on the possibility that the Taean Formation was deposited between Permian and Early Triassic periods. However, further studies on the stratigraphy and sedimentary petrology are needed to clarify its definition and to elucidate the provenance.

경기육괴 서부에 분포하는 태안층의 독특한 쇄설성 저어콘 연대 분포가 알려진 이후 퇴적환경, 퇴적시기, 기원지, 변성사 등에 대한 다양한 연구가 이루어졌다. 이 논평에서는 그 동안 태안층에 대하여 이루어진 기존 연구들을 소개하고 퇴적시기 및 기원지에 대하여 고찰하고자 한다. 태안층은 전통적으로 선캠브리아시대의 지층으로 알려졌으나, 근래 다수의 전기-중기 고생대 저어콘들이 발견된 이후 중부 혹은 상부 고생대 퇴적층으로 해석되고 있다. 태안층은 주로 석영과 운모로 구성된 변성사암, 이질편암, 천매암으로 구성되었으며, 이들의 원암은 심해선상지의 로브 환경에서 쌓인 저탁암으로 해석되었다. 태안층이 퇴적된 시기는 쇄설성 저어콘 연령과 관입암의 연령 차이를 통해 데본기-트라이아스기 사이로 알려져 있는데, 퇴적시기가 데본기에 가깝다는 견해와 페름기에 가깝다는 견해로 나뉜다. 태안층의 기원지는 남중국지괴나 중국의 충돌대, 또는 경기육괴로 추정되고 있다. 태안층과 기타 한반도 (변성)퇴적층의 쇄설성 저어콘 연대를 다룬 기존 연구들의 자료를 비교한 결과, 태안층은 연천층군이나 옥천누층군의 피반령 단위와 주요 기원암을 공유하되 기원지가 완전히 일치하지는 않는 것으로 여겨진다. 이러한 결과를 바탕으로 태안층의 퇴적시기와 기원지에 대한 기존 가설들을 고려하면, 태안층을 페름기-전기 트라이아스기 사이에 퇴적된 것으로 해석한 모델이 비교적 합리적으로 보인다. 향후 태안층의 정의를 명확히 하고 기원지 규명을 위한 층서학 및 퇴적암석학적 추가연구가 필요하다.

Keywords

References

  1. Chang, T.W. and Lee, S.Y. (1982) Explanatory text of the geological map of 1:50,000 Seosan.Mohang Sheet. Korea Institute of Energy and Resources, 30p.
  2. Cho, D.-L. (2007) SHRIMP zircon dating of a low-grade meta-sandstone from the Taean Formation: provenance and its tectonic implications. KIGAM Bull., v.11, p.3-14.
  3. Cho, M., Na, J. and Yi, K. (2010) SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, western Gyeonggi massif, Korea: Tectonic implications. Geosci, J., v.14, p.99-109. https://doi.org/10.1007/s12303-010-0011-7
  4. Cho, M., Cheong, W., Ernst, W.G., Yi, K. and Kim, J. (2013) SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central ogcheon foldthrust belt, Korea: Evidence for tectonic assembly of Paleozoic sedimentary protoliths. J. Asian Earth Sci., v.63, p.234-249. https://doi.org/10.1016/j.jseaes.2012.08.020
  5. Cho, M., Lee, Y., Kim, T., Cheong, W., Kim, Y. and Lee, S.R. (2017) Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: An overview. Geosci. J., v.21, p.845-865. https://doi.org/10.1007/s12303-017-0044-2
  6. Choi, P.-Y. (2014) Stratigraphy and depositional environments of the Paleozoic strata. In Choi, S.J. (ed.), Technical Development of Tectonic Evolution and Geologic Information Construction, Korea Institute of Geoscience and Mineral Resources, Daejeon, 189-218.
  7. Choi, P.-Y., Kihm, Y.H. and Chun, H.Y. (2016) Geological report of the Yeongheungdo, Pungdo, Gyeongnyeolbiyeoldo, Gungsido, Geoado and Naepasudo sheets. Korea Institute of Geoscience and Mineral Resources, 75p.
  8. Choi, P.-Y., Rhee, C.W., Lim, S.-B. and So, Y. (2008) Subdivision of the Upper Paleozoic Taean Formation in the Anmyeondo-Boryeong area, west Korea: a preliminary approach to the sedimentary organization and structural features. Geosci. J., v.12, p.373-384. https://doi.org/10.1007/s12303-008-0037-2
  9. De Jong, K., Han, S., Ruffet, G. and Yi, K. (2014) First age constraints on the timing of metamorphism of the Taean Formation, Anmyeondo: concordant 233 Ma U-Pb titanite and 231-229 Ma $^{40}Ar/^{39}Ar$ muscovite ages. J. Geol. Soc. Korea, v.50, p.593-609. https://doi.org/10.14770/jgsk.2014.50.5.593
  10. Guynn, J. (2006) Comparison of detrital zircon age distributions using the K-S test. University of Arizona, Tucson, 10p.
  11. Han, S., de Jong, K. and Yi, K. (2017) Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes. J. Asian Earth Sci., v.143, p.191-217. https://doi.org/10.1016/j.jseaes.2017.04.028
  12. Hu, B., Zhai, M., Li, T., Li, Z., Peng, P., Guo, J. and Kusky, T.M. (2012) Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Res., v.22, p.828-842. https://doi.org/10.1016/j.gr.2012.03.005
  13. Kee, W.-S., Koh, H.J., Kim, S.W., Kim, Y.B., Khim, Y.H., Kim, H.C., Park, S.-I., Song, K.Y., Lee, s.R., Lee, Y.S., Lee, H.J., Cho, D.r., Choi, b.Y., Choi, S.J., Hwang, J.H. (2011) Tectonic evolution of the upper crustal units in the mid-western part of the Korean peninsula. Korea Institute of Geoscience and Mineral Resources, 242p.
  14. Kim, D.H. and Hwang, J.H. (1982) Explanatory text of the geological map of 1:50,000 Daesan-Igog Sheet. Korea Institute of Energy and Resources, 27p.
  15. Kim, H.S., Hwang, M.-K., Ree, J.-H. and Yi, K. (2013) Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: insights from U-Pb dating of detrital zircon. Earth Planet. Sc. Lett., v.368, p.204-218. https://doi.org/10.1016/j.epsl.2013.03.003
  16. Kim, M.J., Park, J.-W., Lee, T.-H., Song, Y.-S. and Park, K.-H. (2016) LA-MC-ICPMS U-Pb ages of the detrital zircons from the Baengnyeong Group: Implications of the dominance of the Mesoproterozoic zircons. Econ. Environ. Geol., v.49, p.433-444. https://doi.org/10.9719/EEG.2016.49.6.433
  17. Kim, S.W. and Kee, W.-S. (2015) Tectonic correlation of the Neoproterozoic and Paleozoic rocks between the western Gyeonggi block in Korea and major blocks in China: Geochronological implication. J. Geol. Soc. Korea, v.51, p.511-524. https://doi.org/10.14770/jgsk.2015.51.5.511
  18. Kim, S.W., Kee, W.-S., Lee, S.R., Santosh, M. and Kwon, S. (2013) Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Res., v.227, p.349-367. https://doi.org/10.1016/j.precamres.2012.01.014
  19. Kim, S.W., Kwon, S., Santosh, M., Cho, D.L. and Ryu, I.-C. (2014) Detrital zircon U-Pb geochronology and tectonic implications of the Paleozoic sequences in western South Korea. J. Asian Earth Sci., v.95, p.217-227. https://doi.org/10.1016/j.jseaes.2014.05.022
  20. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M. and Ryu, I.-C. (2015) Early to Middle Paleozoic arc magmatism in the Korean Peninsula: Constraints from zircon geochronology and geochemistry. J. Asian Earth Sci., v.113, p.866-882. https://doi.org/10.1016/j.jseaes.2015.09.017
  21. Kim, S.W., Park, S.-I., Jang, Y., Kwon, S., Kim, S.J. and Santosh, M. (2017) Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: Implications for the tectonic history of East Asia. Gondwana Res., v.50, p.195-215. https://doi.org/10.1016/j.gr.2017.05.009
  22. Lee, C.W., Paik,C.H. and Lee, D.W. (1995) Formation and evolution history of the Cretaceous Chunsuman Formation, Korea. J. Korean Earth Sci. Soc., v.16, p.222-231.
  23. Lee, S.M., Kim, H.S., Na, K.C. and Park, B.Y. (1989) Geological Report of the Tangjin-Changgohang Sheet (1:50,000). Korea Institute of Energy and Resources, 15p.
  24. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H. and Wingate, M.T.D. (2003) Age geochemistry, and tectonic significance of Neoproterozoic alkakine granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Res. v.112, p.297-310.
  25. Lim, S.B., Choi, H.I., Kim, B.C. and Kim, J.C. (1999) Depositional systems of the sedimentary basin (I): depositional systems and their evolution of the Proterozoic Paegryeong group and Taean formation. Korea Institute of Geoscience and Mineral Resources, 116p.
  26. Lee, Y. I., Choi, T., Lim, H.S. and Orihashi, Y. (2016) Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea: Implications for the Gondwana linkage of the Sino-Korean (North China) block during the Neoproterozoic-early Cambrian. Palaeogeogr. Palaeocl., v.441, p.770-786. https://doi.org/10.1016/j.palaeo.2015.10.025
  27. Mckenzie, N.R., Hughes, N.C., Myrow, P.M., Choi, D.K. and Park, T.-Y. (2011) Trilobites and zircons link north China with the eastern himalaya during the Cambrian. Geology, v.39, p.591-594. https://doi.org/10.1130/G31838.1
  28. Na, J., Kim, Y., Cho, M. and Yi, K. (2012) SHRIMP U-Pb ages of detrital zircons from metasedimentary rocks in the Yeongheung-Seonjae-Daebu islands, Northwestern Gyeonggi massif. J. Petro. Soc. Korea, v.21, p.31-45. https://doi.org/10.7854/JPSK.2012.21.1.031
  29. Na, K.C. (1992) A study on the metamorphism in the southwestern part of Gyeonggi Massif. J. Petrol. Soc. Korea, v.1, p.25-33.
  30. Na, K.C., Kim, H.S. and Lee, S.H. (1982) Stratigraphy and metamorphism of Seosan Group. Econ. Environ. Geol., v.15, p.33-39.
  31. Park, K.-H., Lee, T.-H. and Yi, K. (2011) SHRIMP U-Pb ages of detrital zircons in the Daeyangsan Quartzite of the Okcheon Metamorphic Belt, Korea. J. Geol. Soc. Korea, v.47, p.423-431.
  32. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K. and Santosh, M. (2014) Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: Insights from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochemistry. Gondwana Res., v.26, p.684-698. https://doi.org/10.1016/j.gr.2013.07.015
  33. Park, S.-I., Kim, S.W., Kwon, S., Santosh, M., Ko, K. and Kee, W.-S. (2017) Nature of Late Mesoproterozoic to Early Neoproterozoic magmatism in the western Gyeonggi massif, Korean Peninsula and its tectonic significance. Gondwana Res., v.47, p.291-307. https://doi.org/10.1016/j.gr.2016.11.006
  34. So, Y., Rhee, C.W., Choi, P.Y., Kee, W.S., Seo, J.Y. and Lee, E.J. (2013) Distal turbidite fan/lobe succession of the Late Paleozoic Taean Formation, western Korea. Geosci. J., v.17, p.9-25. https://doi.org/10.1007/s12303-013-0016-0
  35. Song, M.Y. and Woo, Y.K. (1992) Structural and physical properties of the earth crust material in the middle of the Korean Peninsula (1): geology in the vicinity of Chunsu Bay. J. Korean Earth Sci. Soc., v.13, p.53-65.
  36. Vermeesch, P. (2012) On the visualisation of detrital age distributions. Chem. Geol., v.312-313, p.190-194. https://doi.org/10.1016/j.chemgeo.2012.04.021
  37. Vermeesch, P. (2013) Multi-sample comparison of detrital age distributions. Chem. Geol., v.341, p.140-146. https://doi.org/10.1016/j.chemgeo.2013.01.010
  38. Vermeesch, P. (2018) IsoplotR: A free and open toolbox for geochronology. Geosci. Front., v.9, p.1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001