DOI QR코드

DOI QR Code

A review on sediment replenishment to river channel for natural recovery of regulated rivers below large dams

댐하류 조절하천의 자연성 회복을 위한 하천 유사환원 연구 고찰

  • Ock, Giyoung (Department of Ecosystem Assessment, National Institute of Ecology) ;
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University) ;
  • Choi, Mikyoung (International Water Resources Research Institute, Chungnam National University)
  • 옥기영 (국립생태원 생태평가연구실) ;
  • 장창래 (한국교통대학교 토목공학과) ;
  • 김범철 (강원대학교 환경융합학부) ;
  • 최미경 (충남대학교 국제수자원연구소)
  • Received : 2019.07.17
  • Accepted : 2019.10.02
  • Published : 2019.10.31

Abstract

This study dealt with a systematic approach for sediment replenishment works which defines the artificial supply of coarse sediment to downstream river channels of dams. That is an increasing practice in Japanese, American and European rivers for the purpose of compensating sediment deficits downstream and rehabilitating geomorphological habitats below dams. We introduced five main objectives of the sediment replenishment, simply from construction of artificial spawning redds for anadromous fish to restoration of fluvial geomorphological process of river system. Then we suggested determination of sediment size distribution and quantity of coarse sediment as well as selecting an effective implementation method in corresponding to specific objectives and local restrictions in the basin, reservoir and river.

본 연구는 댐에 의해 유사공급이 제한되는 댐하류 하천에서 자연성 회복을 위한 근본적 방안으로서 댐 건설 후 감소된 유사의 공급과 이송능력을 회복하기 위하여 인공적으로 하천에 모래와 자갈과 같은 토사를 공급하는 하천 유사환원 연구 기술을 체계적으로 고찰하였다. 유사환원의 목적을 초기의 수질 개선과 어류의 인공산란처 조성에서부터, 이후 저수지 퇴사대책, 하천구조물 안전성 유지, 그리고 최근의 하천의 지형형성 과정 회복까지 다섯 개로 구분하여 제시하였으며, 이러한 사업 목적에 따른 공급토사의 크기, 공급량, 현장에서 적용되는 공급방법과 모니터링 방안을 국내외 연구사례를 들어 체계적으로 고찰하였다. 앞으로 국내 하천관리에서 환경유량과 유사환원이 연계된 통합 하천관리 기술발전에 기여하기를 기대한다.

Keywords

References

  1. Ashida, K., Egashira, S., Nakagawa, H. (2008). River morphodynamics for 21st Century. Kyoto University Press, Kyoto, Japan. pp. 91-106.
  2. Beechie, T. J., Sear, D. A., Olden, J. D., Pess, G. R., Buffington, J. M., Moir, H., Roni P., and Pollock, M. M. (2010). "Process-based principles for restoring river ecosystems." BioScience, Vol. 60, No. 3, pp. 209-222. https://doi.org/10.1525/bio.2010.60.3.7
  3. Fuller, I. C., Large, A. R., Charlton, M. E., Heritage, G. L., and Milan, D. J. (2003). "Reach-scale sediment transfers an evaluation of two morphological budgeting approaches." Earth Surface Processes and Landforms, Vol. 28, No. 8, pp. 889-903. https://doi.org/10.1002/esp.1011
  4. Gaeuman, D. (2014). "High-flow gravel injection for constructing designed in-channel features." River Research and Applications, Vol. 30, No. 6, pp. 685-706. https://doi.org/10.1002/rra.2662
  5. International Commission on Large Dams (ICOLD) (2018). World register of dams. International Commission on Large Dams.
  6. Kantoush, S. A., Sumi, T., and Kubota, A. (2010). "Geomorphic response of rivers below dams by sediment replenishment technique." Proceedings of River Flow 2010, Braunschweig, Germany, pp. 1155-1163.
  7. Kondolf, G. M. (1997). "Hungry water: effects of dams and gravel mining on river channels." Environmental Management, Vol. 21, No. 4, pp. 533-552. https://doi.org/10.1007/s002679900048
  8. Kuhl, D. (1992). "14 years of artificial grain feeding in the Rhine downstream the barrage Iffezheim." Proceeding of 5th International Symposium on River Sedimentation, Karlsruhe, Germany, pp. 1121-1129.
  9. Ligon, F. K., Dietrich, W. E., and Trush, W. J. (1995). "Downstream ecological effects of dams." BioScience, Vol. 45, No. 3, pp. 183-192. https://doi.org/10.2307/1312557
  10. Merz, J. E., Pasternack, G. B., and Wheaton, J. M. (2006). "Sediment budget for salmonid spawning habitat rehabilitation in a regulated river." Geomorphology, Vol. 76, No. 1-2, pp. 207-228. https://doi.org/10.1016/j.geomorph.2005.11.004
  11. Miyagawa, Y., Sumi, T., Takemon, Y., and Kobayashi, S. (2017). "Effects of sediment replenishment on riverbed material size distribution and attached algal biomass in the downstream reaches of a dam." Hydrological Research Letters, Vol. 11, No. 2, pp. 114-120. https://doi.org/10.3178/hrl.11.114
  12. Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C. (2005). "Fragmentation and flow regulation of the world's large river systems." Science, Vol. 308, No. 5720, pp. 405-408. https://doi.org/10.1126/science.1107887
  13. Ock, G., and Takemon, Y. (2014). "Effect of reservoir-derived plankton released from dams on particulate organic matter composition in a tailwater river (Uji river, Japan): source partitioning using stable isotopes of carbon and nitrogen." Ecohydrology, Vol. 7, No. 4, pp. 1172-1186.
  14. Ock, G., Gaeuman, D., McSloy, J., and Kondolf, G. M. (2015). "Ecological functions of restored gravel bars, the Trinity River, California." Ecological Engineering, Vol. 83, pp. 49-60. https://doi.org/10.1016/j.ecoleng.2015.06.005
  15. Ock, G., Kondolf, G. M., Takemon, Y., and Sumi, T. (2013a). "Missing link of coarse sediment augmentation to ecological functions in regulated rivers below dams: comparative approach in Nunome River, Japan and Trinity River, California of US." Advances in River Sediment Research, pp. 1531-1538.
  16. Ock, G., Sumi, T., and Takemon, Y. (2013b). "Sediment replenishment to downstream reaches below dams: implementation perspectives." Hydrological Research Letters, Vol. 7, No. 3, pp. 54-59. https://doi.org/10.3178/hrl.7.54
  17. Paintal, A. S. (1971). "Concept of critical shear stress in loose boundary open channels." Journal of Hydraulic Research, Vol. 9, No. 1, pp. 91-113. https://doi.org/10.1080/00221687109500339
  18. Palmer, M. A., Bernhardt, E. S., Allan, J. D., Lake, P. S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Dahm, C. N., Follstad Shah, J., and Galat, D. L. (2005). "Standards for ecologically successful river restoration." Applied Ecology, Vol. 42, No. 2, pp. 208-217. https://doi.org/10.1111/j.1365-2664.2005.01004.x
  19. Park, M., Lee, J., Jung, S., Park, C., Chang, K., and Kim, B. (2012). "Effects of sand supply and artificial floods on peripgyton in the downstream of a dam(Yangyang Dam, Korea)." Journal of Korean Society on Water Environment, Vol. 28, pp. 418-425.
  20. Power, M. E., Dietrich, W. E., and Finlay, J. C. (1996). "Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change." Environmental Management, Vol. 20, No. 6, pp. 887-895. https://doi.org/10.1007/BF01205969
  21. Reid, L. M., and Dunne, T. (2003). "Sediment budgets as an organizing framework in fluvial geomorphology." Tools in fluvial geomorphology, John Wiley&Sons Ltd., West Susses, UK. pp. 463-500.
  22. Sumi, T., Kantoush, S., Esmaeili, T., and Ock, G. (2017). "Reservoir sediment flushing and replenishment below dams: insights from Japanese case studies." Gravel-bed rivers: processes and disasters, John Wiley& Sons, West Sussex, UK. pp 385-414.
  23. United States Department of the Interior (USDOI) (2000). Record of decision: trinity river mainstem fishery restoration, final environmental impact statement/environmental impact report. US Department of the Interior, Washington DC.
  24. Wheaton, J. M., Pasternack, G. B., and Merz, J. E. (2004). "Spawning habitat rehabilitation-I. Conceptual approach and methods." International Journal of River Basin Management, Vol. 2, No. 1, pp. 3-20. https://doi.org/10.1080/15715124.2004.9635218
  25. Williams, G. P., and Wolman, M. G. (1984). Downstream effects of dams on alluvial rivers. USGS professional paper 1286, Reston (VA).
  26. World Commission on Dams (WCD) (2000). Dams and development: a new framework for decision-making: the report of the world commission on dams. Earthscan Publication, London.