DOI QR코드

DOI QR Code

Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater : An In Vitro Study

  • Kizmazoglu, Ceren (Department of Neurosurgery, Dokuz Eylul University School of Medicine) ;
  • Aydin, Hasan Emre (Department of Neurosurgery, Kutahya Health Science University Evliya Celebi Training and Research Hospital) ;
  • Kaya, Ismail (Department of Neurosurgery, Kutahya Health Science University Evliya Celebi Training and Research Hospital) ;
  • Atar, Murat (Department of Neurosurgery, Sultan Abdulhamid Han Training and Research Hospital) ;
  • Husemoglu, Bugra (Department of Biomechanics, Dokuz Eylul University School of Medicine Health Science Institute) ;
  • Kalemci, Orhan (Department of Neurosurgery, Dokuz Eylul University School of Medicine) ;
  • Sozer, Gulden (Department of Pathology, Forensic Medicine Institution) ;
  • Havitcioglu, Hasan (Department of Biomechanics, Dokuz Eylul University School of Medicine Health Science Institute)
  • Received : 2019.05.22
  • Accepted : 2019.07.26
  • Published : 2019.11.01

Abstract

Objective : The aim of this study was to investigate the biomechanical differences between human dura mater and dura mater substitutes to optimize biomimetic materials. Methods : Four groups were investigated. Group I used cranial dura mater (n=10), group II used $Gore-Tex^{(R)}$ Expanded Cardiovascular Patch (W.L. Gore & Associates Inc., Flagstaff, AZ, USA) (n=6), group III used $Durepair^{(R)}$ (Medtronic Inc., Goleta, CA, USA) (n=6), and group IV used $Tutopatch^{(R)}$ (Tutogen Medical GmbH, Neunkirchen am Brand, Germany) (n=6). We used an axial compression machine to measure maximum tensile strength. Results : The mean tensile strengths were $7.01{\pm}0.77MPa$ for group I, $22.03{\pm}0.60MPa$ for group II, $19.59{\pm}0.65MPa$ for group III, and $3.51{\pm}0.63MPa$ for group IV. The materials in groups II and III were stronger than those in group I. However, the materials in group IV were weaker than those in group I. Conclusion : An important dura mater graft property is biomechanical similarity to cranial human dura mater. This biomechanical study contributed to the future development of artificial dura mater substitutes with biomechanical properties similar to those of human dura mater.

Keywords

References

  1. Aliredjo RP, de Vries J, Menovsky T, Grotenhuis JA, Merx J : The use of Gore-Tex membrane for adhesion prevention in tethered spinal cord surgery: technical case reports. Neurosurgery 44 : 674-677, 1999 https://doi.org/10.1097/00006123-199903000-00139
  2. Azzam D, Romiyo P, Nguyen T, Sheppard JP, Alkhalid Y, Lagman C, et al. : Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and nonautologous dural substitutes. World Neurosurg 113 : 244-248, 2018 https://doi.org/10.1016/j.wneu.2018.01.115
  3. Cantore G, Guidetti B, Delfini R : Neurosurgical use of human dura mater sterilized by gamma rays and stored in alcohol: long-term results. J Neurosurg 66 : 93-95, 1987 https://doi.org/10.3171/jns.1987.66.1.0093
  4. Chaplin JM, Costantino PD, Wolpoe ME, Bederson JB, Griffey ES, Zhang WX : Use of an acellular dermal allograft for dural replacement: an experimental study. Neurosurgery 45 : 320-327, 1999 https://doi.org/10.1097/00006123-199908000-00025
  5. Danish SF, Samdani A, Hanna A, Storm P, Sutton L : Experience with acellular human dura and bovine collagen matrix for duraplasty after posterior fossa decompression for Chiari malformations. J Neurosurg 104 : 16-20, 2006 https://doi.org/10.3171/ped.2006.104.1.16
  6. Famaey N, Verhoeven J, Jacobs S, Pettinari M, Meyns B : In situ evolution of the mechanical properties of stretchable and non-stretchable ePTFE vascular grafts and adjacent native vessels. Int J Artif Organs 37 : 900-910, 2014 https://doi.org/10.5301/ijao.5000368
  7. Filippi R, Schwarz M, Voth D, Reisch R, Grunert P, Perneczky A : Bovine pericardium for duraplasty: clinical results in 32 patients. Neurosurg Rev 24 : 103-107, 2001 https://doi.org/10.1007/PL00012392
  8. FungYC : Biomechanics: mechanical properties of living tissues, ed 2. New York : Springer-Verlag, 1981
  9. Hoshi K, Yoshino H, Urata J, Nakamura Y, Yanagawa H, Sato T : Creutzfeldt-Jakob disease associated with cadaveric dura mater grafts in Japan. Neurology 55 : 718-721, 2000 https://doi.org/10.1212/WNL.55.5.718
  10. Inoue HK, Kobayashi S, Ohbayashi K, Kohga H, Nakamura M : Treatment and prevention of tethered and retethered spinal cord using a Gore-Tex surgical membrane. J Neurosurg 80 : 689-693, 1994 https://doi.org/10.3171/jns.1994.80.4.0689
  11. Knopp U, Christmann F, Reusche E, Sepehrnia A : A new collagen biomatrix of equine origin versus a cadaveric dura graft for the repair of dural defects--a comparative animal experimental study. Acta Neurochir (Wien) 147 : 877-887, 2005 https://doi.org/10.1007/s00701-005-0552-0
  12. Laun A, Tonn JC, Jerusalem C : Comparative study of lyophilized human dura mater and lyophilized bovine pericardium as dural substitutes in neurosurgery. Acta Neurochir (Wien) 107 : 16-21, 1990 https://doi.org/10.1007/BF01402607
  13. Lee CK, Alexander H : Prevention of postlaminectomy scar formation. Spine (Phila Pa 1976) 9 : 305-312, 1984 https://doi.org/10.1097/00007632-198404000-00016
  14. McGarvey KA, Lee JM, Boughner DR : Mechanical suitability of glycerolpreserved human dura mater for construction of prosthetic cardiac valves. Biomaterials 5 : 109-117, 1984 https://doi.org/10.1016/0142-9612(84)90011-5
  15. Moskowitz SI, Liu J, Krishnaney AA : Postoperative complications associated with dural substitutes in suboccipital craniotomies. Neurosurgery 64 : 28-33, 2009 https://doi.org/10.1227/01.NEU.0000334414.79963.59
  16. Patin DJ, Eckstein EC, Harum K, Pallares VS : Anatomic and biomechanical properties of human lumbar dura mater. Anesth Analg 76 : 535- 540, 1993
  17. Protasoni M, Sangiorgi S, Cividini A, Culuvaris GT, Tomei G, Dell'Orbo C, et al. : The collagenic architecture of human dura mater. J Neurosurg 114 : 1723-1730, 2011 https://doi.org/10.3171/2010.12.JNS101732
  18. Runza M, Pietrabissa R, Mantero S, Albani A, Quaglini V, Contro R : Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations. Anesth Analg 88 : 1317-1321, 1999 https://doi.org/10.1213/00000539-199906000-00022
  19. Sacks MS, Jimenez Hamann MC, Otano-Lata SE, Malinin TI : Local mechanical anisotropy in human cranial dura mater allografts. J Biomech Eng 120 : 541-544, 1998 https://doi.org/10.1115/1.2798027
  20. Sade B, Oya S, Lee JH : Non-watertight dural reconstruction in meningioma surgery: results in 439 consecutive patients and a review of the literature. Clinical article. J Neurosurg 114 : 714-718, 2011 https://doi.org/10.3171/2010.7.JNS10460
  21. Topsakal C, Akpolat N, Erol FS, Ozveren MF, Akdemir I, Kaplan M, et al. : Seprafilm superior to Gore-Tex in the prevention of peridural fibrosis. J Neurosurg 101 : 295-302, 2004 https://doi.org/10.3171/jns.2004.101.2.0295
  22. van Noort R, Black MM, Martin TR, Meanley S : A study of the uniaxial mechanical properties of human dura mater preserved in glycerol. Biomaterials 2 : 41-45, 1981 https://doi.org/10.1016/0142-9612(81)90086-7
  23. Warren WL, Medary MB, Dureza CD, Bellotte JB, Flannagan PP, Oh MY, et al. : Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery 46 : 1391-1396, 2000 https://doi.org/10.1097/00006123-200006000-00020
  24. Wilcox RK, Bilston LE, Barton DC, Hall RM : Mathematical model for the viscoelastic properties of dura mater. J Orthop Sci 8 : 432-434, 2003 https://doi.org/10.1007/s10776-003-0644-9
  25. Wolfinbarger L, Zhang YX, Adam BLT, Homsi D, Gates K, Sutherland V : Biomechanical aspects on rehydrated freeze-dried human allograft dura mater tissues. J Appl Biomater 5 : 265-270, 1994 https://doi.org/10.1002/jab.770050313
  26. Yamada K, Miyamoto S, Nagata I, Kikuchi H, Ikada Y, Iwata H, et al. : Development of a dural substitute from synthetic bioabsorbable polymers. J Neurosurg 86 : 1012-1017, 1997 https://doi.org/10.3171/jns.1997.86.6.1012
  27. Yamada K, Miyamoto S, Takayama M, Nagata I, Hashimoto N, Ikada Y, et al. : Clinical application of a new bioabsorbable artificial dura mater. J Neurosurg 96 : 731-735, 2002 https://doi.org/10.3171/jns.2002.96.4.0731
  28. Zerris VA, James KS, Roberts JB, Bell E, Heilman CB : Repair of the dura mater with processed collagen devices. J Biomed Mater Res B Appl Biomater 83 : 580-588, 2007

Cited by

  1. Performance evaluation of bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composites for dural substitution vol.234, pp.8, 2019, https://doi.org/10.1177/0954411920926071
  2. Multilayered Artificial Dura-Mater Models for a Minimally Invasive Brain Surgery Simulator vol.10, pp.24, 2019, https://doi.org/10.3390/app10249000
  3. The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications vol.13, pp.12, 2019, https://doi.org/10.3390/polym13121995
  4. Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding vol.13, pp.13, 2019, https://doi.org/10.3390/polym13132130
  5. Biomechanics of vascular areas of the human cranial dura mater vol.125, 2019, https://doi.org/10.1016/j.jmbbm.2021.104866
  6. Mechanical properties of porcine spinal dura mater and pericranium vol.126, 2019, https://doi.org/10.1016/j.jmbbm.2021.105056