• Title/Summary/Keyword: Mechanics

Search Result 11,104, Processing Time 0.083 seconds

Spatial Optical Modulator (SOM);Samsung's Light Modulator for the Next Generation Laser Display

  • Yun, Sang-Kyeong;Song, Jong-Hyeong;Lee, Tae-Won;Yeo, In-Jae;Choi, Yoon-Joon;Lee, Yeong-Gyu;An, Seung-Do;Han, Kyu-Bum;Victor, Yurlov;Park, Heung-Woo;Park, Chang-Su;Kim, Hee-Yeoun;Yang, Jeong-Suong;Cheong, Jong-Pil;Ryu, Seung-Won;Oh, Kwan-Young;Yang, Haeng-Seok;Hong, Yoon-Shik;Hong, Seok-Kee;Yoon, Sang-Kee;Jang, Jae-Wook;Kyoung, Je-Hong;Lim, Ohk-Kun;Kim, Chun-Gi;Lapchuk, Anatoliy;Ihar, Shyshkin;Lee, Seung-Wan;Kim, Sun-Ki;Hwang, Young-Nam;Woo, Ki-Suk;Shin, Seung-Wan;Kang, Jung-Chul;Park, Dong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.551-555
    • /
    • 2006
  • A new type of diffractive spatial optical modulators, named SOM, has been developed by Samsung Electro-Mechanics for projection display and other applications. A laser display in full HD format $(1920{\times}1080)$ was successfully demonstrated by using prototype projection engines having SOM devices, signal processing circuits, and projection optics.

  • PDF

Development of New Computer Program for Mechanics of Materials and Structural Mechanics Courses (재료역학과 구조역학 수업을 위한 전산프로그램 개발)

  • Lee, Sang Soon
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • The new computer program, visual SolidMech (ver 2.0), for mechanics of materials and structural mechanics has been developed using visual C++. The visual SolidMech is organized in a format similar to most standard texts on mechanics of materials and structural mechanics. This program consists of a number of menus to perform various calculations as well as a set of dedicated graphical user interfaces. Solutions to problems are given in both graphical and numerical forms. The visual SolidMech will help students develop problem-solving skills by showing them the important factors affecting various problem types, by helping them visualize the nature of internal stresses and member deformations, and by providing them an easy-to-use means of investigating a greater number of problems and variations. This new program can be utilized as a supplement to existing texts in mechanics of materials and structural mechanics.

  • PDF

Monolayer Rotating Ball Electronic Paper Display

  • Cha, Hye-Yeon;Lee, Choong-Hee;Lee, Sang-Moon;Kwak, Jeong-Bok;Chae, Kyoung-Soo;Lee, Hee-Bum;Lee, Young-Woo;Lee, Chong-Seo;Oh, Yong-Soo;Lee, Hwan-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.367-369
    • /
    • 2009
  • Optically anisotropic rotating balls were disposed in a monolayer, and controllably closely packed with respect to one another in the monolayer. The close packed monolayer configuration provided high brightness and improved contrast. The monolayer rotating ball display (MRB) electrically demonstrated a fast response time of approximately 40 msec at a voltage of 30 V. Measurements of the rotation as a function of voltage led to surface charge density for the balls in the range of 3-4 ${\mu}C/m^2$.

  • PDF

Longitudinal vibration of double nanorod systems using doublet mechanics theory

  • Aydogdu, Metin;Gul, Ufuk
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.37-52
    • /
    • 2020
  • This paper investigates the free and forced longitudinal vibration of a double nanorod system using doublet mechanics theory. The doublet mechanics theory is a multiscale theory spanning between lattice dynamics and continuum mechanics. Equations of motion and boundary conditions for the double nanorod system are obtained using Hamilton's principle. Clamped-clamped and clamped-free boundary conditions are considered. Frequencies and dynamic displacements are determined to demonstrate the effects of length scale parameter of considered material and geometry of the nanorods. It is shown that frequencies obtained by the doublet mechanics theory are bounded from above (van Hove singularity) and unlike classical elasticity theory doublet mechanics theory predicts finite number of modes depending on the length of the nanotube. The present doublet mechanics results have been compared to molecular dynamics, experimental and nonlocal theory results and good agreement is observed between the present and other mentioned results. The difference between wave frequencies of graphite is less than 10% between doublet mechanics and experimental results near to the end of the first Brillouin zone.

MEMS based micro-fuel processor

  • Kundu, Arunabha;Jang, J.H.;Lee, H.R.;Jung, C.R.;Gil, J.H.;Kim, S.H.;Cha, H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.611-612
    • /
    • 2006
  • PDF

Computational multiscale analysis in civil engineering

  • Mang, H.A.;Aigner, E.;Eberhardsteiner, J.;Hackspiel, C.;Hellmich, C.;Hofstetter, K.;Lackner, R.;Pichler, B.;Scheiner, S.;Sturzenbecher, R.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.109-128
    • /
    • 2009
  • Multiscale analysis is a stepwise procedure to obtain macro-scale material laws, directly amenable to structural analysis, based on information from finer scales. An essential ingredient of this mode of analysis is mathematical homogenization of heterogeneous materials at these scales. The purpose of this paper is to demonstrate the potential of multiscale analysis in civil engineering. The materials considered in this work are wood, shotcrete, and asphalt.