DOI QR코드

DOI QR Code

아연나노입자함유 교정용 레진의 물리적 특성 평가

Evaluation of Physical Properties of Resin Containing Zinc Nanoparticle.

  • 조정기 (충북보건과학대학교 치기공과)
  • Jo, Jeong-Ki (Department of Dental Laboratory Technology, Chungbuk Health & Science University)
  • 투고 : 2019.09.01
  • 심사 : 2019.10.20
  • 발행 : 2019.10.28

초록

가철성 교정장치의 자가중합 레진인 Polymethyl methacrylate(PMMA)는 색의 안정성과 체적 안정성, 조직 친화성 등의 장점이 있어 오랫동안 치과 교정장치 재료로 사용해 왔다. 하지만 이러한 가철성 교정장치는 구강내에서 사용이 길어질수록 PMMA의 낮은 강도로 인하여 사용중 교정장치 레진상이 파절되는 단점이 있다. 본 연구에서는 zinc nanoparticle (ZNP)가 orthodontic PMMA에 혼합하여 강도효과를 도입하고자한다. ZNP을 함유된 orthodontic PMMA (0, 0.5, 1.0, 2.0 및 4.0%)의 직사각형 시료($1.4{\times}3.0{\times}19.0mm$)를 제작하였다. 제작완료된 시편을 1 mm/min의 속도로 3점 굽힘강도 시험하였고, 비커스 경도는 경도기를 이용하여 3회측정하였고, 표면조도기로 표면조도를 측정하였다. 그 결과 3점 굽힘강도는 유의한 변화가 없었다(p>0.05). 경도를 평가한 결과 역시 유지됨을 관찰하였다. 표면조도도 큰 차이가 보이지 않았다. 표면에너지는 유의차 있게 증가하였다. ZNP함유된 orthodontic PMMA는 의치 및 교정용 장치의 기계적 특성 대한 유의한 차이가 없음을 확인하였다. 결과적으로 본 연구에서 ZNP를 성공적으로 합성하고 이것이 분산된 교정용 레진 시편을 제작하였다. 추후 항균실험을 추가하여 고강도와 항균력이 있는 교정장치를 개발할 수 있는 연구가 필요하다.

Polymethyl methacrylate (PMMA), a self-polymerizing resin for removable orthodontic devices, has been used as a dental orthodontic device for many years because of its advantages such as color stability, volume stability, and tissue compatibility. However, such a removable orthodontic device has a disadvantage that the longer the use in the oral cavity due to the low strength of the PMMA fracture of the orthodontic device resin in use. In this study, zinc nanoparticles (ZNP) were mixed with orthodontic PMMA to introduce strength effect. Rectangular samples ($1.4{\times}3.0{\times}19.0mm$) of orthodontic PMMA (0, 0.5, 1.0, 2.0 and 4.0%) containing ZNP were prepared. The finished specimen was tested for three-point bending strength at a speed of 1 mm / min, and the Vickers hardness was measured three times using a hardness tester. The surface roughness was measured with a surface roughness. As a result, the 3-point bending strength did not change significantly (p>0.05). Surface energy increased significantly. As a result, we successfully synthesized ZNP in this study and prepared the dispersed resin specimen for calibration. It will be possible to develop high-density dental orthodontic resins.

키워드

참고문헌

  1. M. M. Lino, C. S. Paulo, A. C. Vale, M. F. Vaz & L S. Ferreira. (2013). Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dental Materials, 29(10), :e252-e62. DOI : 10.1016/j.dental.2013.07.023
  2. J. Wen, F. Jiang, C. K. Yeh & Y. Sun. (2016). Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids and Surfaces B: Biointerfaces, 140, 19-27. DOI: 10.1016/j.colsurfb.2015.12.028
  3. W. Wang, S. Liao, Y. Zhu, M. Liu, Q. Zhao & Y. Fu. (2015). Recent applications of nanomaterials in prosthodontics. Journal of Nanomaterials, 2015, 3. DOI.; 10.1155/2015/408643
  4. G. C. Padovani et al. (2015). Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends in biotechnology, 33(11), 621-36. DOI: 10.1016/j.tibtech.2015.09.005
  5. J. S. Kim et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine. Nanotechnology, Biology and Medicine, 3(1), 95-101. DOI: 10.1016/j.nano.2006.12.001
  6. L. S. Acosta-Torres, I. Mendieta, R. E. Nunez-Anita, M. Cajero-Juarez & V. M. Castano. (2012). Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International journal of nanomedicine, 7, 4777-86. DOI: 10.2147/IJN.S32391
  7. D, T. De Castro et al. (2016). In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. The Journal of prosthetic dentistry, 115(2), 238-246. DOI: 10.4103/JCD.JCD_266_17
  8. J. Chen, H. Peng, X. Wang, F. Shao, Z. Yuan & H. Han. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale. 6(3), 1879-89. DOI: 10.1039/c3nr04941
  9. H. Chen et al. (2013). Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small, 9(16), 2735-46 DOI: 10.1002/smll.201202792
  10. S. Morimune, T. Nishino & T. Goto. (2012). Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites. ACS applied materials & interfaces, 4(7), :3596-3601. DOI: 10.1021/am3006687
  11. R. K. Singh et al. (2014). Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS applied materials & interfaces, 6(4), 2201-2208. DOI: 10.1021/am4056936
  12. R. K. Singh, G. Z. Jin, C. Mahapatra, K. D. Patel, W. Chrzanowski, H. W. Kim. (2015). Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. ACS Appl Mater Interfaces. 7(15), 8088-8098. DOI: 10.1021/acsami.5b00692
  13. S. J. Strydom, W. E. Rose, D. P. Otto, W. Liebenberg & M. M. de Villiers. (2013). Poly (amidoamine) dendrimer-mediated synthesis and stabilization of silver sulfonamide nanoparticles with increased antibacterial activity. Nanomedicine: nanotechnology, biology and medicine, 9(1), 85-93. DOI: 10.1016/j.nano.2012.03.006
  14. W. Stober, A. Fink & E. Bohn. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69. DOI: 10.1016/0021-9797(68)90272-5
  15. O. Yamamoto. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643-646. DOI:10.1016/S1466-6049(01)00197-0
  16. J. H. Lee, J. S. Kwon, J. Y. Om, H. Y. Kim, E. H. Choi, K. M. Kim & K. N. Kim. (2014). Cell immobilizaion on poly by air atmospheric pressure plasma jet treatment. Jpn J Phys. 53:086202. https://ir.ymlib.yonsei.ac.kr>bitstreamT201405815 https://doi.org/10.7567/JJAP.53.086202
  17. H. H. Lee, C. J. Lee & K. Asaoka. (2012). Correlation in the mechanical properties of acrylic denture base resins. Dental materials journal, 31(1), 157-164. DOI: 10.4012/dmj.2011-205
  18. S. Redding, B. Bhatt, H. R. Rawls, G. Siegel, K. Scott & J. Lopez-Ribot. (2009). Inhibition of Candida albicans biofilm formation on denture material. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107(5):669-72. DOI: 10.1016/j.tripleo.2009.01.021
  19. J. H. Jorge, E. T. Giampaolo, C. E. Vergani, A. L. Machado, A. C. Pavarina, I. Z. Carlos. (2006). Effct of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. Journal of Applied Oral Science, 14(3), 203-207. DOI: 10.1590/S1678-77572006000300011
  20. R. Augustine et al. (2014). Electrospun polycaprolactone/ZnO nanocompositemembranes as biomaterials with antibacterial and cell adhesionproperties. Journal of Polymer Research, 21(3), 347. DOI: 10.1007/s10965-013-0347-6
  21. T. Notomi et al. (2015). Zinc-Induced Effects on Osteoclastogenesis InvolvesActivation of Hyperpolarization -Activated Cyclic Nucleotide ModulatedChannels via Changes in Membrane Potential. J BONE MINER RES, 30(9):1618-1626. DOI: 10.1002/jbmr.2507
  22. N. Jones et al. (2008) Antibacterial activity of ZnO nanoparticle suspensions ona broad spectrum of microorganisms. FEMS microbiology letters, 79(1), 71-76. DOI: 10.1111/j.1574-6968.2007.01012
  23. J. Sawai et al. (1998). Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of fermentation and bioengineering, 86(5), 521-522. DOI 10.1007/s13762-013-0474
  24. J. Sawai & T. Yoshikawa. (2004). Quantitative evaluation of antifungal activityof metallic oxide powders (MgO, CaO and ZnO) by an indirectconductimetric assay. Journal of applied microbiology, 96(4), 803-809. DOI: 10.1111/j.1365-2672.2004.02234
  25. P. K. Stoimenov et al. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679-6686. DOI: 10.1021/la0202374
  26. Xie Y et al. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 77(7), 2325-2331. DOI: 10.1128/AEM.02149-10
  27. Zhang L et al. (2007) Investigation into the antibacterial behaviour ofsuspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479-489. DOI: 10.1007/s11051-006-9150-1
  28. S. Anitha et al. (2012). Optical, bactericidal and water repellent properties ofelectrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate Polymers, 87(2), 1065-1072. DOI: 10.1016/j.carbpol.2011.08.030
  29. S. Kasraei et al. (2014). Antibacterial properties of composite resinsincorporating silver and zinc oxide nanoparticles on Streptococcusmutans and Lactobacillus. Restorative dentistry & endodontics, 39(2), 109-114. DOI: 10.5395/rde.2014.39.2.109
  30. K. Shalumon et al. (2011). Sodium alginate/poly (vinyl alcohol)/nano ZnOcomposite nanofibers for antibacterial wound dressings. International journal of biological macromolecules, 49(3), 247-254. DOI: 10.1016/j.ijbiomac.2011.04.005
  31. T. Amna et al. (2013). Zinc oxide-doped poly (urethane) spider web nanofibrousscaffold via one-step electrospinning: a novel matrix for tissueengineering. Applied microbiology and biotechnology, 97(4), 1725-1734. DOI: 10.1007/s00253-012-4353-0
  32. R. Augustine et al. (2014). Electrospun polycaprolactone membranesincorporated with ZnO nanoparticles as skin substitutes with enhancedfibroblast proliferation and wound healing. RSC Advances,4(47), 24777-24785. DOI: 2014.4(47):24777-24785.10.1039/C4RA02450H
  33. R Augustine et al. (2014). Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. Journal of Polymer Research, 21(3), 347. https://books.google.co.kr https://doi.org/10.1007/s10965-013-0347-6
  34. C. R. Srurz et al. (2015). Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dental materials journal, 34(6), 796-813. DOI: 10.4012/dmj.2014-098