Performance Evaluation of Reconstruction Algorithms for DMIDR

DMIDR 장치의 재구성 알고리즘 별 성능 평가

  • Received : 2019.09.16
  • Accepted : 2019.10.27
  • Published : 2019.10.12

Abstract

Purpose DMIDR(Discovery Molecular Imaging Digital Ready, General Electric Healthcare, USA) is a PET/CT scanner designed to allow application of PSF(Point Spread Function), TOF(Time of Flight) and Q.Clear algorithm. Especially, Q.Clear is a reconstruction algorithm which can overcome the limitation of OSEM(Ordered Subset Expectation Maximization) and reduce the image noise based on voxel unit. The aim of this paper is to evaluate the performance of reconstruction algorithms and optimize the algorithm combination to improve the accurate SUV(Standardized Uptake Value) measurement and lesion detectability. Materials and Methods PET phantom was filled with $^{18}F-FDG$ radioactivity concentration ratio of hot to background was in a ratio of 2:1, 4:1 and 8:1. Scan was performed using the NEMA protocols. Scan data was reconstructed using combination of (1)VPFX(VUE point FX(TOF)), (2)VPHD-S(VUE Point HD+PSF), (3)VPFX-S (TOF+PSF), (4)QCHD-S-400((VUE Point HD+Q.Clear(${\beta}-strength$ 400)+PSF), (5)QCFX-S-400(TOF +Q.Clear(${\beta}-strength$ 400)+PSF), (6)QCHD-S-50(VUE Point HD+Q.Clear(${\beta}-strength$ 50)+PSF) and (7)QCFX-S-50(TOF+Q.Clear(${\beta}-strength$ 50)+PSF). CR(Contrast Recovery) and BV(Background Variability) were compared. Also, SNR(Signal to Noise Ratio) and RC(Recovery Coefficient) of counts and SUV were compared respectively. Results VPFX-S showed the highest CR value in sphere size of 10 and 13 mm, and QCFX-S-50 showed the highest value in spheres greater than 17 mm. In comparison of BV and SNR, QCFX-S-400 and QCHD-S-400 showed good results. The results of SUV measurement were proportional to the H/B ratio. RC for SUV is in inverse proportion to the H/B ratio and QCFX-S-50 showed highest value. In addition, reconstruction algorithm of Q.Clear using 400 of ${\beta}-strength$ showed lower value. Conclusion When higher ${\beta}-strength$ was applied Q.Clear showed better image quality by reducing the noise. On the contrary, lower ${\beta}-strength$ was applied Q.Clear showed that sharpness increase and PVE(Partial Volume Effect) decrease, so it is possible to measure SUV based on high RC comparing to conventional reconstruction conditions. An appropriate choice of these reconstruction algorithm can improve the accuracy and lesion detectability. In this reason, it is necessary to optimize the algorithm parameter according to the purpose.

DMIDR (General Electric Healthcare, USA)은 GE 사(社)의 최신 장비로써 PSF (Point Spread Function reconstruction), TOF(Time of Flight)와 Q.Clear의 적용이 가능하다. 특히, Q.Clear는 보정 알고리즘으로써 복셀(voxel)단위 신호 잡음 제거로 기존 OSEM (Ordered Subset Expectation Maximization)의 한계를 넘어설 수 있다. 따라서 이러한 재구성 및 보정 알고리즘의 성능 평가를 통해 정확한 SUV를 구현하며, 병변 검출 능력에 도움이 되는 알고리즘의 조합을 확인하고자 하였다. H/B(Hot & Background) Ratio 2:1, 4:1, 8:1의 비율로 NEMA/IEC 2008 PET phantom을 제작하였다. DMIDR의 NEMA test protocol을 이용하여 영상 획득을 하였다. 재구성 조합은 (1) VPFX(VUE point FX(TOF)), (2) VPHD-S(VUE point HD+PSF), (3) VPFX-S(TOF+PSF), (4) QCHD-S-400(VUE point HD+Q.Clear(${\beta}-strength$ 400)+PSF), (5) QCFX-S-400(TOF+Q.Clear(${\beta}-strength$ 400)+PSF), (6) QCHD-S-50(VUE point HD+Q.Clear(${\beta}-strength$ 50)+PSF), (7) QCFX-S-50(TOF+Q.Clear(${\beta}-strength$ 50) + PSF)의 7 가지로 구성하였다. H/B Ratio 및 재구성 알고리즘 별로 측정된 결과를 이용하여 CR (Contrast Recovery)와 BV (Background Variability)을 구하였다. 또한, 각 조합의 count를 측정하여 SNR (Signal to Noise Ratio)과 RC(Recovery Coefficient)를 구하고 SUV (Standardized Uptake Value)를 측정하였다. 구의 크기가 가장 작은 10 mm와 13 mm에서는 VPFX-S, 17 mm 이상에서는 QCFX-S-50에서 가장 높은 CR 결과를 보였다. BV와 SNR의 비교에서는 QCFX-S-400과 QCHD-S-400에서 좋은 값을 보였다. SUV 측정 결과는 H/B ratio와 비례하여 증감하는 양상을 보였다. SUV에 대한 RC의 경우 H/B ratio와 반비례하는 양상을 보였으며, 재구성 알고리즘 중에서는 QCFX-S-50이 가장 높은 값을 보였다. 또한, Q.Clear에 ${\beta}-strength$ 400이 적용된 재구성 알고리즘들이 낮은 값 분포를 보였다. Q.Clear가 적용된 재구성 조합은 ${\beta}-strength$를 높이면 신호잡음이 억제되어 영상 품질면에서 우수한 결과를 보였고 ${\beta}-strength$를 낮추면 선예도가 증가하며, partial volume effect가 감소하여 기존의 재구성 조건에 비하여 높은 RC에 근거한 SUV 측정이 가능하였다. 이러한 진보된 알고리즘의 사용으로 보다 정확한 정량화와 미세병변 검출능력을 향상 시킬 수 있으나 상관 관계를 고려하여 목적에 맞는 최적화 과정이 필요할 것으로 사료된다.

Keywords

References

  1. Ell PJ, The contribution of PET/CT to improved patient management. Br J Radiol 2006;79:32-36. https://doi.org/10.1259/bjr/18454286
  2. Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med 2016:46;5-19. https://doi.org/10.1053/j.semnuclmed.2015.09.006
  3. Gabriel Reynes-Llompart1, Cristina Gamez-Cenzano1, Inmaculada Romero-Zayas1, Laura Rodriguez-Bel1, Jose L. Vercher-Conejero1, and Josep M. Marti-Climent2. Performance Characteristics of the Whole-Body Discovery IQ PET/CT System. J Nucl Med 2017; 58:1155-1161. https://doi.org/10.2967/jnumed.116.185561
  4. 윤석환. PET/CT에서 Phantom을 이용한 Fluorine-18, Gallium-68 방사성 핵종의 PET 영상 평가. Journal of Radiological Science and Technology, 41(4), 321-327 https://doi.org/10.17946/JRST.2018.41.4.321
  5. Margaret E. Daube-Witherspoon, PhD1; Joel S. Karp, PhD1; Michael E. Casey, PhD2; Frank P. DiFilippo, PhD3; Horace Hines, PhD4; Gerd Muehllehner, PhD5; Vilim Simcic, PhD6; Charles W. Stearns, PhD7; Lars-Eric Adam, PhD1; Steve Kohlmyer, MS7,8; and Vesna Sossi, PhD9. PET Performance Measurements Using the NEMA NU 2-2001 Standard. NEMA NU 2-2001 Standard. J Nucl Med 2002; 43:1398-1409.
  6. Gopal B. Saha, PhD. Basics of PET Imaging: Physics, Chemistry, and Regulations. 2005 Springer Science+Business Media, Inc. p.70-71.
  7. 식품의약품안전평가원. PET/CT 안전성 및 성능평가 시험 방법 가이드라인. 2015.02. p. 25-28.
  8. Steve Ross, PhD. Q.Clear. 2013. General Electric Company.
  9. Eugene J. Teoh1,2 & Daniel R. McGowan2,3 & Kevin M. Bradley1 & Elizabeth Belcher4 & Edward Black4 & Fergus V. Gleeson1,2. Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules. Eur Radiol (2016) 26:576-584. https://doi.org/10.1007/s00330-015-3832-y
  10. Eugene J. Teoh*1,2, Daniel R. McGowan*2,3, Ruth E. Macpherson1, Kevin M. Bradley1, and Fergus V. Gleeson1,2. Phantom and Clinical Evaluation of the Bayesian Penalized Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System. J Nucl Med. 2015;56:1447-1452 https://doi.org/10.2967/jnumed.115.159301
  11. Dale L Bailey, David W Townsed, Peter E Valk, Michael N Maisey(Eds). Positron Emission Tomography Basic sciences. Spinger-Verlag London Limited; 2005.p121-122.
  12. Mark van Heijl, Jikke M. Omloo, Mark I. van Berge Henegouwen, Jan J. van Lanschot, Gerrit W. Sloof and Ronald Boellaard.Influence of ROI definition, partial volume correction and SUV normalization on SUV-survival correlation in oesophageal cancer. Nuclear Medicine Communications 2010;31:652-658. https://doi.org/10.1097/mnm.0b013e3283390c56
  13. V. Bettinardi, I. Castiglioni, E. De Bernardi, M. C. Gilardi, PET quantification: strategies for partial volume correction. Clin Transl Imaging (2014) 2:199-218 DOI 10.1007/s40336-014-0066-y.
  14. Nikie J. Hoetjes & Floris H. P. van Velden & Otto S. Hoekstra & Corneline J. Hoekstra & Nanda C. Krak & Adriaan A.Lammertsma & Ronald Boellaard. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 2010;37:1679-1687. https://doi.org/10.1007/s00259-010-1472-7
  15. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol 2000;27(7):647-55. https://doi.org/10.1016/S0969-8051(00)00143-8
  16. 고현수.박순기.최재민.김정선.정우영. 부분 체적 효과에서 회복 계수를 이용한 보정 전과 후 SUV의 비교 분석. Nucl Med Technol. Vol. 15, No. 1, April 2011.