References
- Abd-Alla, A.M., Abo-Dahab, S.M. and Al-Thamali, T.A. (2012), "Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity", J. Mech. Sci. Technol., 26(9), 2815-2823. https://doi.org/10.1007/s12206-012-0736-5
- Abd-alla, A.E.N.N., Alshaikh, F., Del Vescovo, D. and Spagnuolo, M. (2015), "Plane waves and eigenfrequency study in a transversely isotropic magneto-thermoelastic medium under the effect of a constant angular velocity", New Developments Pure Appl. Math., 40(9), 1079-1092. https://doi.org/10.1080/01495739.2017.1334528
- Abo-Dahab, S.M., Jahangir, A. and Abo-el-nour, N. (2018), "Reflection of plane waves in thermoelastic microstructured materials under the influence of gravitation", Continuum Mech. Thermodyn., 1-13. https://doi.org/10.1007/s00161-018-0739-2
- Ailawalia, P. and Narah, N.S. (2009), "Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid", Appl. Math. Mech. (English Edition) 30(12), 1505-1518. https://doi.org/10.1007/s10483-009-1203-6
- Ailawalia, P., Kumar, S. and Pathania, D. (2010), "Effect of rotation in a generalized thermoelastic medium with two temperature under hydrostatic initial stress and gravity", Multidiscipl. Model. Mater. Struct., 6(2), 185-205. https://doi.org/10.1108/15736101011067984
- Banik, S. and Kanoria, M. (2012), "Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity", Appl. Math. Mech., 33(4), 483-498. https://doi.org/10.1007/s10483-012-1565-8
- Bijarnia, R. and Singh, B. (2016), "Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids", Int. J. Appl. Mech. Eng., 21(2), 285-301. https://doi.org/10.1515/ijame-2016-0018
- Chauthale, S. and Khobragade, N.W. (2017), "Thermoelastic response of a thick circular plate due to heat generation and its thermal stresses", Global J. Pure Appl. Math..13, 7505-7527.
- Chen, P.J. and Gurtin, M.E. (1968), "On a theory of heat conduction involving two temperatures", Zeitschrift fur Angewandte Mathematik und Physik., 19(4), 614-627. https://doi.org/10.1007/BF01594969
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1968), "A note on non-simple heat conduction", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 19(4), 969-970. https://doi.org/10.1007/BF01602278
- Chen, P.J., Gurtin, M.E. and Williams, W.O. (1969), "On the thermodynamics of non-simple elastic materials with two temperatures", Zeitschrift fur angewandte Mathematik und Physik, 20(1), 107-112. https://doi.org/10.1007/BF01591120
- Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quarter. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828
- Ezzat, M. and AI-Bary, A. (2016), "Magneto-thermoelectric viscoelastic materials with memory dependent derivatives involving two temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131
- Ezzat, M.A. and El-Bary, A.A. (2017a), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., Int. J., 25(2), 177-186. https://doi.org/10.12989/scs.2017.25.2.177
- Ezzat, M.A. and El-Bary, A.A. (2017b), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., Int. J., 24(3), 297-307.
- Ezzat, M.A., El-Karamany, A.S. and Ezzat, S.M. (2012), "Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer", Nuclear Eng. Des., 252, 267- 277. https://doi.org/10.1016/j.nucengdes.2012.06.012
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2015), "Thermo-viscoelastic materials with fractional relaxation operators", Appl. Math. Model., 39(23), 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018
- Ezzat, M., El-Karamany, A. and El-Bary, A. (2016), "Generalized thermoelasticity with memory-dependent derivatives involving two temperatures", Mech. Adv. Mater. Struct., 23(5), 545-553. https://doi.org/10.1080/15376494.2015.1007189
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017a), "Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer", Microsyst. Technol., 24(2), 951-961. https://doi.org/10.1007/s00542-017-3425-6
- Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2017b), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., Int. J., 19(5), 539-577. http://dx.doi.org/10.12989/sss.2017.19.5.539
- Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Thermal Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136
- Green, A.E. and Naghdi, P.M. (2017), "Thermoelasticity without energy dissipation", J. Phys. Math. , 31(3), 189-208. https://doi.org/10.1007/BF00044969
- Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Computat. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Kumar, R., Sharma, N. and Lata, P. (2016a), "Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J. 57(1), 91-103. http://dx.doi.org/10.12989/sem.2016.57.1.091
- Kumar, R., Sharma, N. and Lata, P. (2016b), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
- Kumar, R., Sharma, N. and Lata, P. (2016c), "Thermomechanical interactions in transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40, 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061
- Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coupl. Syst. Mech., Int. J., 6(3), 317-333. https://doi.org/10.12989/csm.2017.6.3.317
- Kumar, R., Kaushal, P. and Sharma, R. (2018), "Transversely isotropic magneto-visco thermoelastic medium with vacuum and without energy dissipation", J. Solid Mech., 10(2), 416-434.
- Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439
- Lata, P. and Kaur, I. (2019a), "Transversely isotropic thick plate with two temperature and GN type-III in frequency domain", Coupl. Syst. Mech., Int. J., 8(1), 55-70. https://doi.org/10.12989/csm.2019.8.1.055
- Lata, P. and Kaur, I. (2019b), "Study of transversely isotropic thick circular plate due to ring load with two temperature & green nagdhi theory of type-I, II and III", International Conference on Sustainable Computing in Science, Technology & Management (SUSCOM-2019), - Elsevier SSRN., Amity University Rajasthan, Jaipur, India, pp. 1753-1767.
- Lata, P. and Kaur, I. (2019c), "Thermomechanical Interactions in transversely isotropic thick circular plate with axisymmetric heat supply", Struct. Eng. Mech., Int. J., 69(6), 607-614. http://dx.doi.org/10.12989/sem.2019.69.6.607
- Lata, P. and Kaur, I. (2019d), "Transversely isotropic magneto thermoelastic solid with two temperature and without energy dissipation in generalized thermoelasticity due to inclined load", SN Appl. Sci., 1(5), 426. https://doi.org/10.1007/s42452-019-0438-z
- Lata, P. and Kaur, I. (2019e), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., Int. J., 70(2), 245-255. http://dx.doi.org/10.12989/sem.2019.70.2.245
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. http://dx.doi.org/10.12989/scs.2016.22.3.567
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Mahmoud, S. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47, 1561-1579. https://doi.org/10.1007/s11012-011-9535-9
- Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Analele Universitatii "Ovidius" Constanta-Seria Matematica, 23(1), 171-184. https://doi.org/10.1515/auom-2015-0011
- Marin, M. (1996), "Generalized solutions in elasticity of micropolar bodies with voids", Revista de la Academia Canaria de Ciencias, 8(1), 101-106.
- Marin, M. (1997a), "Cesaro means in thermoelasticity of dipolar bodies", Acta Mech., 122(1-4), 155-168. https://doi.org/10.1007/BF01181996
- Marin, M. (1997b), "On weak solutions in elasticity of dipolar bodies with voids", J. Computat. Appl. Math., 82(1-2), 291-297. https://doi.org/10.1016/S0377-0427(97)00047-2
- Marin, M. (1998), "Contributions on uniqueness in thermoelastodynamics on bodies with voids", Revista Cienc. Mat. (Havana), 16(2), 101-109.
- Marin, M. (2008), "Weak solutions in elasticity of dipolar porous materials", Math. Problems Eng., 1-8. http://dx.doi.org/10.1155/2008/158908
- Marin, M. (2009), "On the minimum principle for dipolar materials with stretch", Nonlinear Anal.: Real World Appl., 10(3), 1572-1578. https://doi.org/10.1016/j.nonrwa.2008.02.001
- Marin, M. (2010), "A partition of energy in thermoelasticity of microstretch bodies", Nonlinear Anal.: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014
- Marin, M. (2016), "An approach of a heat flux dependent theory for micropolar porous media", Meccanica, 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2
- Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Boundary Value Problems, 2016(1), 111. https://doi.org/10.1007/s11012-015-0265-2
- Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4
- Marin, M. and Ochsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Thermodyn., 29, 1365-1374. https://doi.org/10.1007/s00161-017-0585-7
- Marin, M. and Stan, G. (2013), "Weak solutions in Elasticity of dipolar bodies with stretch", Carpathian J. Math., 29(1), 33-40. https://doi.org/10.37193/CJM.2013.01.12
- Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermoelastic body with two temperatures", Abstract Appl. Anal., 2013, 1-7. http://dx.doi.org/10.1155/2013/583464
- Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
- Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Results Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012
- Othman, M.I., Khan, A., Jahangir, R. and Jahangir, A. (2019), "Analysis on plane waves through magneto-thermoelastic microstretch rotating medium with temperature dependent elastic properties", Appl. Math. Model., 65, 535-548. https://doi.org/10.1016/j.apm.2018.08.032
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), "Numerical recipes in Fortran 77", Cambridge University Press Cambridge.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quarter. Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma, J.N. and Kaur, D. (2010), "Rayleigh waves in rotating thermoelastic solids with voids", Int. J. Appl. Math. Mech., 6(3), 43-61. https://doi.org/10.1090/qam/99708
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22, 107-117.
- Shaw, S. and Mukhopadhyay, B. (2015), "Electromagnetic effects on wave propagation in an isotropic micropolar plate", J. Eng. Phys. Thermophys., 88(6), 1537-1547. https://doi.org/10.1007/s10891-015-1341-0
- Singh, B. and Yadav, A.K. (2012), "Plane waves in a transversely isotropic rotating magnetothermoelastic medium", J. Eng. Phys. Thermophys., 85(5), 1226-1232. https://doi.org/10.1007/s10891-012-0765-z
- Slaughter, W.S. (2002), The Linearised Theory of Elasticity, Birkhausar.
Cited by
- Transversely isotropic Euler Bernoulli thermoelastic nanobeam with laser pulse and with modified three phase lag Green Nagdhi heat transfer vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.829