DOI QR코드

DOI QR Code

Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions

  • Lee, Kyung Ha (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2019.07.19
  • Accepted : 2019.08.28
  • Published : 2019.09.15

Abstract

The dinoflagellate genus Alexandrium is known to often form harmful algal blooms causing human illness and large-scale mortality of marine organisms. Therefore, the population dynamics of Alexandrium species are of primary concern to scientists and aquaculture farmers. The growth rate of the Alexandrium species is the most important parameter in prediction models and nutrient conditions are critical parameters affecting the growth of phototrophic species. In Korean coastal waters, Alexandrium affine and Alexandrium fraterculus, of similar sizes, often form red-tide patches together. Thus, to understand bloom dynamics of A. affine and A. fraterculus, growth rates and nitrate uptake of each species as a function of nitrate ($NO_3$) concentration at $100{\mu}mol\;photons\;m^{-2}s^{-1}$ under 14-h light : 10-h dark and continuous light conditions were determined using a nutrient repletion method. With increasing $NO_3$ concentration, growth rates and $NO_3$ uptake of A. affine or A. fraterculus increased, but became saturated. Under light : dark conditions, the maximum growth rates of A. affine and A. fraterculus were 0.45 and $0.42d^{-1}$, respectively. However, under continuous light conditions, the maximum growth rate of A. affine slightly increased to $0.46d^{-1}$, but that of A. fraterculus largely decreased. Furthermore, the maximum nitrate uptake of A. affine and A. fraterculus under light : dark conditions were 12.9 and $30.1pM\;cell^{-1}d^{-1}$, respectively. The maximum nitrate uptake of A. affine under continuous light conditions was $16.4pM\;cell^{-1}d^{-1}$. Thus, A. affine and A. fraterculus have similar maximum growth rates at the given $NO_3$ concentration ranges, but they have different maximum nitrate uptake rates. A. affine may have a higher conversion rate of $NO_3$ to body nitrogen than A. fraterculus. Moreover, a longer exposure time to the light may confer an advantage to A. affine over A. fraterculus.

Keywords

Acknowledgement

Supported by : Korea Institute of Marine Science and Technology Promotion (KIMST), National Research Foundation (NRF)

References

  1. Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E. & Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10-35. https://doi.org/10.1016/j.hal.2011.10.012
  2. Band-Schmidt, C. J., Lechuga-Deveze, C. H., Kulis, D. M. & Anderson, D. M. 2003. Culture studies of Alexandrium affine (Dinophyceae), a non-toxic cyst forming dinoflagellate from Bahia Concepcion, Gulf of California. Bot. Mar. 46:44-54. https://doi.org/10.1515/BOT.2003.007
  3. Basti, L., Nagai, S., Go, J., Okano, S., Nagai, K., Watanabe, R., Suzuki, T. & Tanaka, Y. 2015. Differential inimical effects of Alexandrium spp. and Karenia spp. on cleavage, hatching, and two larval stages of Japanese pearl oyster Pinctada fucata martensii. Harmful Algae 43:1-12. https://doi.org/10.1016/j.hal.2014.12.004
  4. Blossom, H. E., Daugbjerg, N. & Hansen, P. J. 2012. Toxic mucus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellate Alexandrium pseudogonyaulax. Harmful Algae 17:40-53. https://doi.org/10.1016/j.hal.2012.02.010
  5. Brand, L. E. & Guillard, R. R. L. 1981. The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. J. Exp. Mar. Biol. Ecol. 50:119-132. https://doi.org/10.1016/0022-0981(81)90045-9
  6. Dapena, C., Bravo, I., Cuadrado, A. & Figueroa, R. I. 2015. Nuclear and cell morphological changes during the cell cycle and growth of the toxic dinoflagellate Alexandrium minutum. Protist 166:146-160. https://doi.org/10.1016/j.protis.2015.01.001
  7. Dias, J., Munoz, J., Huisman, J. & McDonald, J. 2015. Biosecurity monitoring of Harmful Algal Bloom (HAB) species in Western Australian waters: first confirmed record of Alexandrium catenella (Dinophyceae). Bioinvasions Rec. 4:233-241. https://doi.org/10.3391/bir.2015.4.4.01
  8. Eckford-Soper, L. K., Bresnan, E., Lacaze, J. -P., Green, D. H. & Davidson, K. 2016. The competitive dynamics of toxic Alexandrium fundyense and non-toxic Alexandrium tamarense: the role of temperature. Harmful Algae 53:135-144. https://doi.org/10.1016/j.hal.2015.11.010
  9. Fraga, S., Gallager, S. M. & Anderson, D. M. 1989. Chainforming dinoflagellates: an adaptation to red tides. In Okaichi, T., Anderson, D. M. & Nemoto, T. (Eds.) Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York, pp. 281-284.
  10. Guillard, R. R. L. & Hargraves, P. E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234-236. https://doi.org/10.2216/i0031-8884-32-3-234.1
  11. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  12. Hansen, G., Daugbjerg, N. & Franco, J. M. 2003. Morphology, toxin composition and LSU rDNA phylogeny of Alexandrium minutum (Dinophyceae) from Denmark, with some morphological observations on other European strains. Harmful Algae 2:317-335. https://doi.org/10.1016/S1568-9883(03)00060-X
  13. Hatfield, R. G., Bean, T., Turner, A. D., Lees, D. N., Lowther, J., Lewis, A. & Baker-Austin, C. 2019. Development of a TaqMan qPCR assay for detection of Alexandrium spp. and application to harmful algal bloom monitoring. Toxicon X 2:100011. https://doi.org/10.1016/j.toxcx.2019.100011
  14. Hodgkiss, I. J. & Lu, S. 2004. The effects of nutrients and their ratios on phytoplankton abundance in Junk Bay, Hong Kong. In Ang, P. O. (Ed.) Asian Pacific Phycology in the 21st Century: Prospects and Challenges. Springer, Dordrecht, pp. 215-229.
  15. Jacobson, D. M. & Anderson, D. M. 1986. Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. J. Phycol. 22:249-258. https://doi.org/10.1111/j.1529-8817.1986.tb00021.x
  16. Jauzein, C., Labry, C., Youenou, A., Quere, J., Delmas, D. & Collos, Y. 2010. Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophyceae) in response to phosphate limitation. J. Phycol. 46:926-936. https://doi.org/10.1111/j.1529-8817.2010.00878.x
  17. Jeong, H. J., Kang, H. C., You, J. H. & Jang, S. H. 2018a. Interactions between the newly described small‐ and fast‐swimming mixotrophic dinoflagellate Yihiella yeosuensis and common heterotrophic protists. J. Eukaryot. Microbiol. 65:612-626. https://doi.org/10.1111/jeu.12506
  18. Jeong, H. J., Kim, J. S., Song, J. Y., Kim, J. H., Kim, T. H., Kim, S. K. & Kang, N. S. 2007. Feeding by protists and copepods on the heterotrophic dinoflagellates Pfiesteria piscicida, Stoeckeria algicida, and Luciella masanensis. Mar. Ecol. Prog. Ser. 349:199-211. https://doi.org/10.3354/meps07094
  19. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  20. Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130. https://doi.org/10.4490/algae.2017.32.5.30
  21. Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014. Feeding by heterotrophic dinoflagellates and ciliates on the free‐living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41. https://doi.org/10.1111/jeu.12083
  22. Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N., Lee, K. Y. & Yih, W. H. 2005a. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143. https://doi.org/10.3354/ame041131
  23. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  24. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005b. Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150. https://doi.org/10.3354/ame040133
  25. Jeong, H. J., You, J. H., Lee, K. H., Kim, S. J. & Lee, S. Y. 2018b. Feeding by common heterotrophic protists on the mixotrophic alga Gymnodinium smaydae (Dinophyceae), one of the fastest growing dinoflagellates. J. Phycol. 54:734-743. https://doi.org/10.1111/jpy.12775
  26. Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117. https://doi.org/10.1016/j.hal.2018.08.005
  27. Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126. https://doi.org/10.4490/algae.2019.34.5.25
  28. Katsuo, D., Kim, D., Yamaguchi, K., Matsuyama, Y. & Oda, T. 2007. A new simple screening method for the detection of cytotoxic substances produced by harmful red tide phytoplankton. Harmful Algae 6:790-798. https://doi.org/10.1016/j.hal.2007.04.002
  29. Kim, J. H. 2017. Spatiotemporal distribution and a survival strategy of harmful dinoflagellates Alexanderium spp. in Korean coastal waters and application to controlling scuticociliates. M.S. thesis. Seoul National University, Seoul, Korea, 136 pp.
  30. Knaust, R., Urbig, T., Li, L., Taylor, W. & Hastings, J. W. 1998. The circadian rhythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: a comparative study of three bioluminescent marine dinoflagellates. J. Phycol. 34:167-172. https://doi.org/10.1046/j.1529-8817.1998.340167.x
  31. Krause, G. H. 1988. Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanisms. Physiol. Plant. 74:566-574. https://doi.org/10.1111/j.1399-3054.1988.tb02020.x
  32. Lagos, N. 2003. Paralytic shellfish poisoning phycotoxins: occurrence in South America. Comments Toxicol. 9:175-193. https://doi.org/10.1080/08865140302429
  33. Leaw, C. P., Lim, P. T., Ng, B. K., Cheah, M. Y., Ahmad, A. & Usup, G. 2005. Phylogenetic analysis of Alexandrium species and Pyrodinium bahamense (Dinophyceae) based on theca morphology and nuclear ribosomal gene sequence. Phycologia 44:550-565. https://doi.org/10.2216/0031-8884(2005)44[550:PAOASA]2.0.CO;2
  34. Lee, F. W. -F., Morse, D. & Lo, S. C. -L. 2009. Identification of two plastid proteins in the dinoflagellate Alexandrium affine that are substantially down-regulated by nitrogen-depletion. J. Proteome Res. 8:5080-5092. https://doi.org/10.1021/pr900475f
  35. Lee, J. -B., Kim, D. Y. & Lee, J. 1998. Community dynamics and distribution of dinoflagellates and their cysts in Masan-Chinhae Bay, Korea. Fish. Aquat. Sci. 1:283-292.
  36. Lee, K. H., Jeong, H. J., Kim, H. J. & Lim, A. S. 2017. Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity. Algae 32:139-153. https://doi.org/10.4490/algae.2017.32.5.20
  37. Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
  38. Lee, K. H., Jeong, H. J., Lee, K., Franks, P. J. S., Seong, K. A., Lee, S. Y., Lee, M. J., Jang, S. H., Potvin, E., Lim, A. S., Yoon, E. Y., Yoo, Y. D., Kang, N. S. & Kim, K. Y. 2019. Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae 81:106-118. https://doi.org/10.1016/j.hal.2018.11.017
  39. Li, T. -S., Yu, R. -C. & Zhou, M. -J. 2009. Demand and adsorption strategies of phosphorus of Alexandrium catenella isolated from East China Sea. Mar. Environ. Sci. 28:355-359. https://doi.org/10.3969/j.issn.1007-6336.2009.04.003
  40. Lim, A. S., Jeong, H. J., Jang, T. Y., Yoo, Y. D., Kang, N. S., Yoon, E. Y. & Kim, G. H. 2014. Feeding by the newly described heterotrophic dinoflagellate Stoeckeria changwonensis: a comparison with other species in the family Pfiesteriaceae. Harmful Algae 36:11-21. https://doi.org/10.1016/j.hal.2014.04.001
  41. Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18. https://doi.org/10.1016/j.hal.2015.07.010
  42. Lim, P. -T., Leaw, C. -P., Kaga, S., Sekiguchi, K. & Ogata, T. 2007. Growth responses of five non toxic Alexandrium species (dinophyceae) to temperature and salinity. Mar. Res. Indonesia 32:189-195.
  43. Lim, P. -T., Leaw, C. -P., Usup, G., Kobiyama, A., Koike, K. & Ogata, T. 2006. Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinofagellates: Alexandrium tamiyavanichii and Alexandrium minutum (Dinophyceae). J. Phycol. 42:786-799. https://doi.org/10.1111/j.1529-8817.2006.00249.x
  44. Lim, Y. K., Baek, S. H., Lee, M., Kim, Y. O., Choi, K. -H. & Kim, J. H. 2019. Phytoplankton composition associated with physical and chemical variables during summer in the southern sea of Korea: implication of the succession of the two toxic dinoflagellates Cochlodinium (a.k.a. Margalefidinium) polykrikoides and Alexandrium affine. J. Exp. Mar. Biol. Ecol. 516:51-66. https://doi.org/10.1016/j.jembe.2019.05.006
  45. MacKenzie, L., de Salas, M., Adamson, J. & Beuzenberg, V. 2004. The dinoflagellate genus Alexandrium (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. Harmful Algae 3:71-92. https://doi.org/10.1016/j.hal.2003.09.001
  46. Maguer, J. -F., L'Helguen, S., Madec, C., Labry, C. & Le Corre, P. 2007. Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dynophyceae): effect of N-limited growth rate on nitrate and ammonium interactions. J. Phycol. 43:295-303. https://doi.org/10.1111/j.1529-8817.2007.00334.x
  47. McCarthy, P. M. 2013. Census of Australian Marine Dinoflagellates. Available from: http://www.anbg.gov.au/abrs/Dinoflagellates/index_Dino.html. Accessed Apr 5, 2019.
  48. Moita, M. T. & Vilarinho, M. G. 1999. Checklist of phytoplankton species off Portugal: 70 years (1929-1998) of studies. Port. Acta Biol. Ser. B. Sist. 18:5-50.
  49. Montani, S., Magni, P., Shimamoto, M., Abe, N. & Okutani, K. 1998. The effect of a tidal cycle on the dynamics of nutrients in a tidal estuary in the Seto Inland Sea, Japan. J. Oceanogr. 54:65-76. https://doi.org/10.1007/BF02744382
  50. Nagai, S., Nishitani, G., Takano, Y., Yoshida, M. & Takayama, H. 2009. Encystment and excystment under laboratory conditions of the nontoxic dinoflagellate Alexandrium fraterculus (Dinophyceae) isolated from the Seto Inland Sea, Japan. Phycologia 48:177-185. https://doi.org/10.2216/08-43.1
  51. Nakanishi, K., Masao, A., Sako, Y., Ishida, Y., Muguruma, H. & Karube, I. 1996. Detection of the red tide-causing plankton Alexandrium affine by a piezoelectric immunosensor using a novel method of immobilizing antibodies. Anal. Lett. 29:1247-1258. https://doi.org/10.1080/00032719608001478
  52. Nguyen-Ngoc, L. 2004. An autecological study of the potentially toxic dinoflagellate Alexandrium affine isolated from Vietnamese waters. Harmful Algae 3:117-129. https://doi.org/10.1016/S1568-9883(03)00062-3
  53. Nogueira, E., Perez, F. F. & Rios, A. F. 1997. Seasonal patterns and long-term trends in an estuarine upwelling ecosystem (Ria de Vigo, NW Spain). Estuar. Coast. Shelf Sci. 44:285-300. https://doi.org/10.1006/ecss.1996.0119
  54. Ok, J. H., Jeong, H. J., Lim, A. S., You, J. H., Kang, H. C., Kim, S. J. & Lee, S. Y. 2019. Effects of light and temperature on the growth of Takayama helix (Dinophyceae): mixotrophy as a survival strategy against photoinhibition. J. Phycol. Advanced online publication. https://doi.org/10.1111/jpy.12907.
  55. Omachi, C. Y., Tamanaha, M. D. S. & Proenca, L. A. D. O. 2007. Bloom of Alexandrium fraterculus in coastal waters off Itajai, SC, Southern Brazil. Braz. J. Oceanogr. 55:57-61. https://doi.org/10.1590/S1679-87592007000100007
  56. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40. https://doi.org/10.1016/j.hal.2013.10.004
  57. Prezelin, B. B., Meeson, B. W. & Sweeney, B. M. 1977. Characterization of photosynthetic rhythms in marine dinoflagellates: I. Pigmentation, photosynthetic capacity and respiration. Plant Physiol. 60:384-387. https://doi.org/10.1104/pp.60.3.384
  58. Richardson, K., Beardall, J. & Raven, J. A. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93:157-191. https://doi.org/10.1111/j.1469-8137.1983.tb03422.x
  59. Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  60. Van Dolah, F. M., Lidie, K. B., Morey, J. S., Brunelle, S. A., Ryan, J. C., Monroe, E. A. & Haynes, B. L. 2007. Microarray analysis of diurnal‐and circadian‐regulated genes in the florida red‐tide dinoflagellate Karenia brevis (Dinophyceae) 1. J. Phycol. 43:741-752. https://doi.org/10.1111/j.1529-8817.2007.00354.x
  61. Van Haren, H. & Compton, T. J. 2013. Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length. PLoS One 8:e64435. https://doi.org/10.1371/journal.pone.0064435
  62. Yamamoto, T. & Tarutani, K. 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res. 47:27-32. https://doi.org/10.1046/j.1440-1835.1999.00149.x
  63. Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. T. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420. https://doi.org/10.1111/j.1550-7408.2009.00421.x

Cited by

  1. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations vol.35, pp.1, 2019, https://doi.org/10.4490/algae.2020.35.2.24
  2. Feeding by common heterotrophic protist predators on seven Prorocentrum species vol.35, pp.1, 2019, https://doi.org/10.4490/algae.2020.35.2.28
  3. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae vol.167, pp.5, 2020, https://doi.org/10.1007/s00227-020-3678-y
  4. Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species vol.35, pp.3, 2019, https://doi.org/10.4490/algae.2020.35.8.20
  5. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2019, https://doi.org/10.4490/algae.2020.35.9.2
  6. Molecular Identification and Toxin Analysis of Alexandrium spp. in the Beibu Gulf: First Report of Toxic A. tamiyavanichii in Chinese Coastal Waters vol.13, pp.2, 2021, https://doi.org/10.3390/toxins13020161
  7. Increased nitrate concentration differentially affects cell growth and expression of nitrate transporter and other nitrogen-related genes in the harmful dinoflagellate Prorocentrum minimum vol.288, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.132526