DOI QR코드

DOI QR Code

실험계획법을 통한 구리 질화물 패시베이션 형성을 위한 아르곤 플라즈마 영향 분석

Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment

  • 박해성 (서울과학기술대학교 기계공학과) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원)
  • Park, Hae-Sung (Department of Mechanical Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
  • 투고 : 2019.08.05
  • 심사 : 2019.08.30
  • 발행 : 2019.09.30

초록

구리 표면을 대기 중의 산화로부터 보호하기 위해서 아르곤(Ar)과 질소($N_2$) 가스를 이용하는 two-step플라즈마 공정으로 산화 방지층인 구리 질화물 패시베이션 형성을 연구하였다. Ar 플라즈마는 구리 표면에 존재하는 이물질을 제거하는 동시에 표면을 활성화시켜 다음 단계에서 진행되는 $N_2$ 플라즈마 공정 시 질소 원자와 구리의 반응을 촉진시키는 역할을 수행한다. 본 연구에서는 two-step 플라즈마 공정 중 Ar 플라즈마 공정 조건이 구리 질화물 패시베이션 형성에 미치는 영향을 실험계획법의 완전요인설계를 통하여 분석하였다. XPS 분석에 의하면 Ar 플라즈마 공정 시 낮은 RF 파워와 압력을 사용할 경우 구리 산화물 피크(peak) 면적은 감소하고, 반대로 구리 질화물(Cu4N, Cu3N) 피크 면적은 증가하였다. Ar 플라즈마 공정 시 구리 질화물 형성의 주 효과는 RF 파워로 나타났으며 플라즈마 공정 변수간 교호작용은 거의 없었다.

To protect the Cu surface from oxidation in air, a two-step plasma process using Ar and $N_2$ gases was studied to form a copper nitride passivation as an anti-oxidant layer. The Ar plasma removes contaminants on the Cu surface and it activates the surface to facilitate the reaction of copper and nitrogen atoms in the next $N_2$ plasma process. This study investigated the effect of Ar plasma on the formation of copper nitride passivation on Cu surface during the two-step plasma process through the full factorial design of experiment (DOE) method. According to XPS analysis, when using low RF power and pressure in the Ar plasma process, the peak area of copper oxides decreased while the peak area of copper nitrides increased. The main effect of copper nitride formation in Ar plasma process was RF power, and there was little interaction between plasma process parameters.

키워드

참고문헌

  1. R. S. List, C. Webb, and S. E. Kim, "3D wafer stacking technology", Proc. Advanced Metallization Conference, San Diego, CA, USA, 18, 29, (2002).
  2. J. H. Lau, M. Li, M. L. Qingqian, T. Chen, I. Xu, Q. X. Yong, Z. Cheng, N. Fan, E. Kuah, Z. Li, K. H. Tan, Y. M. Cheung, E. Ng, P. Lo, W. Kai, J. Hao, K. S. Wee, J. Ran, C. Xi, R. Beica, S. P. Lim, N. C. Lee, C. T. Ko, H. Yang, Y. H. Chen, M. Tao, J. Lo, and R. S. W. Lee, "Fan-out wafer-level packaging for Heterogenous Integration", IEEE Trans. Compon. Packag. Manuf. Technol., 8(9), 1544 (2018). https://doi.org/10.1109/TCPMT.2018.2848649
  3. C. T. Ko, and K. N. Chen, "Low Temperature Bonding Technology for 3D Integration", Microelectron. Reliab., 52(2), 302 (2012). https://doi.org/10.1016/j.microrel.2011.03.038
  4. C. S. Tan, "Wafer Level 3-D ICs Process Technology", pp.1-11, Springer Science & Business Media, Springer (2009).
  5. P. Morrow, M. J. Kobrinsky, S. Ramanathan, C. M. Park, M. Harmes, V. Ramachandrarao, H. Mog Park, G. Kloster, S. List, and S. Kim, "Wafer level 3D Interconnects via Cu Bonding", Proc. Advanced Metallization Conference, San Diego, CA, USA, 125 (2004).
  6. S. E. Kim, and S. D. Kim, "Wafer level Cu-Cu Direct Bonding for 3D Integration", Microelectron. Eng., 137(1), 158 (2015). https://doi.org/10.1016/j.mee.2014.12.012
  7. S. Kang, J. Lee, E. Kim, N. Lim, S. Kim, S. Kim, and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding", J. Microelectron. Packag. Soc., 19(2), 29 (2012). https://doi.org/10.6117/kmeps.2012.19.2.029
  8. T. H. Kim, M. M. R. Howladar, T. Itoh, and T. Suga, "Room Temperature Cu-Cu Direct Bonding using Surface Activated Bonding Method", J. Vac. Sci. Technol. A, 21(2), 449 (2003).
  9. W. Yang, H. Shintani, M. Akaike, and T. Suga, "Low Temperature Cu-Cu Direct Bonding using Formic Acid Vapor Pretreatment", Proc. IEEE Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, May (2011).
  10. H. J. Ju, Y. H. Lee, S. S. Nho, E. H. Choi, S. K. Rha, and Y. S. Lee "Surface Cleaning Method for Elimination of Cuoxide Layer Formed on Cu Film", Proc. 18th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, Korea (2011).
  11. H. Ju, Y. H. Lee, Y. S. Lee, and S. K. Rha, "Surface Pretreatments for Remove of Native Cu Oxide Layer", J. Surf. Anal., 17(3), 287 (2011). https://doi.org/10.1384/jsa.17.287
  12. D. F. Lim, J. Wei, K. C. Leong, and C. S. Tan, "Cu Passivation for Enhanced Low Temperature ($300^{\circ}C$) Bonding in 3D Integration", Microelectron. Eng., 106, 144 (2013). https://doi.org/10.1016/j.mee.2013.01.032
  13. A. K. Panigrahi, T. Ghosh, S. Vanjari, and S. Singh, "Oxidation Resistive, CMOS Compatible Copper-Based Alloy Ultrathin Films as a Superior Passivation Mechanism for Achieving $150^{\circ}C$ Cu-Cu Wafer on Wafer Thermocompression Bonding", IEEE Trans. Electron Devices, 64(3), 1239 (2017). https://doi.org/10.1109/TED.2017.2653188
  14. H. Park, and S. E. Kim, "Structural Characteristics of Ar-N2 Plasma Treatment on Cu Surface", J. Microelectron. Packag. Soc., 25(4), 75 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.075
  15. M. Okada, L. Vattuone, K. Moritani, L. Savio, Y. Teraoka, T. Kasai, and M. Rocca, "X-ray Photoemission Study of the Temperature-dependent CuO Formation on Cu(410) using an Energetic $O_2$ Molecular Beam", Phys. Rev. B., 75(23), 233413 (2007). https://doi.org/10.1103/PhysRevB.75.233413
  16. C. Biesinger, "Advanced Analysis of Copper X-ray Photoelectron Spectra", Surf. Interface Anal., 49(9), 1325 (2017). https://doi.org/10.1002/sia.6239
  17. A. Miura, T. Takei, and N. Kumada, "Synthesis of $Cu_3N$ from CuO and $NaNH_2$", J. Asian Ceram. Soc., 2(40), 326 (2014). https://doi.org/10.1016/j.jascer.2014.08.007
  18. CasaXPS from http://www.casaxps.com
  19. G. H. Yue, P. X. Yan, J. Z. Liu, M. X. Wang, M. Li, and X. M. Yuan, "Copper Nitride Thin Film Prepared by Reactive Radio-frequency Magnetron Sputtering", J. Appl. Phys., 98, 103506 (2005). https://doi.org/10.1063/1.2132507
  20. J. Blucher, K. Bang, and B. C. Giessen, "Preparation of the Metastable Interstitial Copper Nitride, Cu4N, by d.c. plasma ion nitriding", Mater. Sci. Eng. A., 117, L1 (1989). https://doi.org/10.1016/0921-5093(89)90110-X
  21. F. Guto, A. Simon, J. Jurgen Kohler, and R. K. Kremer, "Li-Cu Exchange in Intercalated $Cu_3N$ - With a Remark on $Cu_4N$", Angew. Chem. Int. Ed., 43(15), 2032 (2004). https://doi.org/10.1002/anie.200353424