DOI QR코드

DOI QR Code

Forecast and identifying factors on a double dip fertility rate for Korea

더블딥 출산율 요인 규명과 향후 추이

  • Oh, Jinho (School of Basic Sciences, College of Engineering, Hanhat National University)
  • 오진호 (한밭대학교 공과대학 기초과학부)
  • Received : 2019.04.09
  • Accepted : 2019.05.29
  • Published : 2019.08.31

Abstract

Since 2000, Korea's total fertility rate (TFR) has been different from that of Japan, Germany, and France where irreversible constants do not change easily in the fertility rate increasing or decreasing phase. It also showed a gradual increase from the minimum fertility level 1.08 in 2005 to 1.23 in 2015, which dropped to 1.17 in 2016, to 1.05 in 2017 and to 0.98 in 2018. This is similar to a double dip in the economic status of a recession. This paper investigates such a TFR increase and decrease factor that predicts the number of births affecting TFR, examines trends in the proportion of married and marital fertility rate broken down by TFR decomposition method. We also examined how these changes affect the change in TFR. According to the results, the number of births is estimated to be between 320 and 330 thousand in 2018, 300 thousand in 2020, 230 and 240 thousand in 2025. The proportion of married is steadily decreasing from 1981 to 2025, and the marital fertility rate is predicted to decline until 2002, then increase from 2003 to 2016 and decrease from 2017 to 2025. Finally, the trend of TFR in terms of number of births, TFR decomposition and statistical model is expected to show 0.98 in 2018, 0.93 to 1.11 in 2020 and 0.76 to 1.08 in 2025.

2000년 이후 우리나라 합계출산율은 일본, 독일, 프랑스처럼 출산율이 상승이나 감소기조에 들어서면 쉽게 변하지 않는 비가역적인 상수형태를 보이는 것과는 다른 양상을 보인다. 또한 2005년 1.08명 최저점에서 서서히 증가해 2015년 1.23명을 보이다가 2016년 1.17명, 2017년 1.05명, 2018년 0.98명으로 급락하고 있다. 이는 마치 경기침체의 더블딥(double dip)과 유사한 형태를 보인다. 본 연구는 이러한 TFR 증감 요인을 규명하기 위해 먼저 TFR에 영향력이 높은 출생아수 추이와 예측, TFR 분해법으로 분해되는 유배우율과 유배우출산율의 추이를 살펴본다. 그리고 이들 변화가 TFR 증감 변화에 어떤 영향력을 나타내는지 살펴보았다. 분석결과 출생아수는 2018년 약 32-33만 명, 2020년 30만 명, 2025년은 23-24만 명 수준을 보일 것으로 추정된다. 유배우율은 1981-2025년까지 지속적으로 감소, 유배우출산율은 2002년 이전까지 감소를 보이다가 2003-2016년 증가추세를 보인후 2017-2025년까지 감소추세로 이어질 것으로 예측되었다. 끝으로 출생아수, 출산율 분해와 통계적 모형으로 살펴본 TFR 향후 추이는 2018년 0.98명, 2020년 0.93-1.11명, 2025년에는 0.76-1.08명으로 분석되었다.

Keywords

References

  1. Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., and Heilig, G. K. (2011). Probabilistic projections of the total fertility rate for all countries, Demography, 48, 815-839. https://doi.org/10.1007/s13524-011-0040-5
  2. Bongaarts, J. (1978). A framework for analyzing the proximate determinants of fertility, Population and Development Review, 4, 105-132. https://doi.org/10.2307/1972149
  3. Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252.
  4. Eom, J. and Kim, K. W. (2013). A study on forecasting total fertility rate using female first marriage rate, Journal of the Korean Data Analysis Society, 15, 1261-1272.
  5. Evans, M. D. R. (1986). American fertility patterns: a comparison of white and nonwhite cohorts born 1903-1956, Population and Development Review, 12, 267-293. https://doi.org/10.2307/1973111
  6. Hyndman, R. J. and Booth, H. (2008). Stochastic population forecasts using functional data models for mortality, fertility and migration, International Journal of forecasting, 24, 323-342. https://doi.org/10.1016/j.ijforecast.2008.02.009
  7. Hyndman, R. J., Booth, H., and Yasmeen, F. (2013). Coherent mortality forecasting: the product-ration method with functional time series models, Demography, 50, 261-283. https://doi.org/10.1007/s13524-012-0145-5
  8. Hyndman, R. J. and Ullah, S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach, Computational Statistics and Data Analysis, 51, 4942-4956. https://doi.org/10.1016/j.csda.2006.07.028
  9. Jeon, K. H. (1997). A mechanism of fertility transition, Understanding of Korea fertility Phase, Ilshin Press.
  10. Jeon, K. H. (2006). Development of fertility assumptions for the future population projection, The Korean Journal of Population Studies, 29, 53-88.
  11. Jeon, K. H., Kim, D. S., Park, S. T., and Eun, K. S. (2002). Fertility, Population for Korea, Statistics Korea.
  12. Kang, K. H. and Ahn, H. S. (2006). Functional data analysis of temperature and precipitations data, The Korean Journal of Applied Statistics, 19, 431-445. https://doi.org/10.5351/KJAS.2006.19.3.431
  13. Kim, H. S., Gye, B. O., and Kim, H. T. (2016). A study on policy and improvement of projection method on fertility in 2016, Statistics Korea.
  14. Kim, K. W. and Jeon, S. B. (2015). Scenario analysis of fertility in Korea using the fertility rate prediction model, The Korean Journal of Applied Statistics, 28, 685-701. https://doi.org/10.5351/KJAS.2015.28.4.685
  15. Kim, S. Y. and Oh, J. H. (2017). A study comparison of mortality projection using parametric and nonparametric model, The Korean Journal of Applied Statistics, 30, 701-717. https://doi.org/10.5351/KJAS.2017.30.5.701
  16. Kim, S. Y., Oh, J. H., and Kim, K. E. (2018). A comparison of mortality projection by different time period in time, The Korean Journal of Applied Statistics, 31, 41-65. https://doi.org/10.5351/KJAS.2018.31.1.041
  17. KOSIS (2016). population projections (2015-2065).
  18. Lee, C. H. (2012). A decomposition of decline in total fertility rate in Korea: Effects of changes in marriage and marital fertility, The Korean Journal of Population Studies, 35, 117-144.
  19. Lee S. S. and Choi, H. J. (2012). Development of Model estimating fertility rate for Korea, The Korean Journal of Population Studies, 35, 77-99.
  20. Lutz, W., Skirbekk, V., and Testa, M. R. (2006). The low-fertility trap hypothesis: forces that may lead to further postponement and fewer births in Europe, Vienna Yearbook of Population Research, 4, 167-192.
  21. Oh, J. H. (2018a). A study on forecasting cohort incomplete fertility for Korea, The Korean Journal of Population Studies, 41, 109-134.
  22. Oh, J. H. (2018b). Development on short term modeling for fertility rate of population projection, Statistical Research Institute.
  23. Park, Y. S., Kim, M. R., and Kim, S. Y. (2013). Probabilistic fertility models and the future population structure of Korea, The Korean Association for Survey Research, 14, 49-78.
  24. Raftery, A. E., Li, N., Chunn, J. L., Sevcikova, H., Gerland, P., and Heilig, G. K. (2012). Bayesian probabilistic population projection for all countries, Proceedings of the National Academy of Sciences of the United States of America, 109, 13915-13921. https://doi.org/10.1073/pnas.1211452109
  25. Raftery, A. E., Alkema, L., and Gerland, P. (2014). Bayesian Population Projections for the United Nations, Statistical Science, 29, 58-68. https://doi.org/10.1214/13-STS419
  26. Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (2nd ed), Springer, New York.
  27. Retherford, R. D. and Cho, L. J. (1973). Comparative analysis of recent fertility trends in East Asia, International Union for the Scientic Study of Population (ed), Population Conference, Liege.
  28. Ryder, N. B. (1990). What is going to happen to American fertility?, Population and Development Review, 16, 433-454. https://doi.org/10.2307/1972831
  29. Sevcikova, H., Alkema, L., and Raftery, A. E. (2011). bayesTFR: an R Package for Probabilistic Projections of the Total Fertility Rate, Journal of Statistical Software, 43, 1-29.
  30. UN (2017). World Population Prospects 2017.